
diss . eth no. 28873

R E C O N S T R U C T I N G E X P R E S S I V E 3 D H U M A N S
F R O M R G B I M A G E S

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zürich)

presented by

vasileios choutas

Dipl. ECE, Aristotle University of Thessaloniki

born on 30 September 1993

citizen of Greece

accepted on the recommendation of

Prof. Dr. Luc Van Gool, examiner
Dr. Michael J. Black, co-examiner

Prof. Dr. Otmar Hilliges, co-examiner
Prof. Dr. Gerard Pons-Moll, co-examiner
Prof. Dr. Dimitrios Tzionas, co-examiner

2022



Vasileios Choutas: Reconstructing expressive 3D humans from RGB images, ©
2022



Στην Ευαγγελία

To Evangelia





A B S T R A C T

Humans use their entire body to interact with each other and the environ-
ment, e.g. we lean towards an object and grasp it with our hands. During
a conversation, facial expressions and hand gestures convey important
non-verbal cues about our emotional state and intentions to our fellow
speakers. Thus, we need the full 3D surface of the body, hands, and face to
understand human behavior. This is a complex task, due to the complexity
of body articulation, variance in appearance and body shape, occlusions
from objects and the body itself. The community has thus far relied on
expensive and cumbersome equipment, such as marker-based motion cap-
ture, to capture the 3D human body. While this approach is effective, it
is limited to few subjects and indoor scenarios. Monocular RGB cameras
are an attractive alternative , thanks to their lower cost and ease of use,
but introduce further challenges, namely perspective ambiguities and view
occlusions. Researchers adopt a divide-and-conquer strategy to simplify the
problem, estimating the body, face, and hands with distinct methods using
part-specific datasets. However, the hands and face constrain the body and
vice-versa, e.g. the position of the wrist depends on the elbow, shoulder,
etc.; the divide-and-conquer approach ignores these constraints.

In this thesis, we aim to reconstruct the full 3D human body, using only
readily accessible monocular RGB images. First, we introduce SMPL-X, a
parametric 3D body model, that represents full-body shape and pose, hand
articulation, and facial expression. Next, we present SMPLify-X, an iterative
optimization method, that fits SMPL-X to 2D image keypoints. SMPLify-X
produces plausible results, if the 2D observations are not noisy, but it is
slow and prone to local minima. To address these issues, we introduce
ExPose, a neural network regressor, that predicts SMPL-X parameters from
an image using body-driven attention, i.e. zooming in on the hands and face,
after predicting the body. From the zoomed-in part images, dedicated part
networks predict the part parameters. ExPose combines the independent
body, hand, and face estimates by trusting them equally, ignoring the
correlation between parts. PIXIE fuses features from the body and part
images using neural networks called moderators, before predicting the
final part parameters. Overall, the addition of the hands and face leads to
noticeably more natural and expressive reconstructions.
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Creating high fidelity avatars from RGB images requires accurate estima-
tion of 3D body shape. Although existing methods are effective at predicting
body pose, they struggle with body shape, due to the lack of data. To resolve
this, we collect internet images from fashion models websites, together with
anthropometric measurements. At the same time, we ask human annota-
tors to rate images and meshes according to a pre-defined set of linguistic
attributes. We use this information as weak supervision to train SHAPY, a
neural network that predicts 3D body pose and shape from an RGB image.
Existing 3D shape benchmarks lack subject variety or ground-truth shape.
To address this issue, we introduce a new dataset, Human Bodies in the
Wild (HBW), which contains images of humans and their corresponding
3D ground-truth body scans. SHAPY outperforms existing 3D body shape
regressors, demonstrating that easy-to-obtain measurements and linguistic
attributes are sufficient for accurate 3D body shape estimation.

Regressors that estimate 3D model parameters are robust and accurate,
but often fail to tightly fit the observations. Optimization approaches tightly
fit the data, by minimizing an energy function composed of a data term and
hand-crafted task-specific priors. Balancing these terms and implementing a
performant version of the solver is a time-consuming task. Machine-learned
optimizers combine the benefits of both regression and optimization ap-
proaches. They learn the priors directly from data, forgoing hand-crafted
priors, and benefit from optimized neural network frameworks for fast
inference. Inspired by the classic Levenberg-Marquardt algorithm, we pro-
pose an update rule which uses a weighted combination of gradient descent
and a network-predicted update. We demonstrate the proposed method’s
versatility on three problems: (i) face tracking from dense 2D landmarks,
(ii) body estimation from 2D keypoints and (iii) head and hand location
from a head-mounted device. Our method offers a competitive alternative
to traditional model fitting pipelines, both in terms of accuracy and speed.

To summarize, we present SMPL-X, a richer representation of the human
body that jointly models the 3D human body pose and shape, facial ex-
pressions, and hand articulation, and three methods, SMPLify-X, ExPose
and PIXIE, that estimate SMPL-X parameters from monocular RGB images,
progressively improving the accuracy and realism of the predictions. Next,
we present two ways for collecting proxy 3D body shape annotations for
in-the-wild images, anthropometric measurements and linguistic attributes,
and use them to train SHAPY, a model that predicts accurate 3D shape from
images without explicit shape supervision. Finally, we propose a versatile
and effective learned optimizer for parametric human model fitting tasks.
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Z U S A M M E N FA S S U N G

Menschen benutzen ihren gesamten Körper, um miteinander und mit der
Umwelt zu interagieren, z.B. man lehnt sich zu einem Objekt hin und greift
es mit den Händen. Während einem Gespräch vermitteln Mimik und Hand-
gesten wichtige nonverbale Hinweise über unseren emotionalen Zustand
und unsere Absichten an unsere Gesprächspartner. Wir brauchen also die
gesamte 3D-Oberfläche des Körpers, der Hände und des Gesichts, um
menschliches Verhalten zu verstehen. Dies ist eine vielschichtige Aufgabe
aufgrund der Komplexität der Körperartikulation, der Varianz des Ausse-
hens und der Körperform, der Verdeckung durch von Objekten und des
Körpers selbst. Bislang hat sich die Gemeinschaft auf teure und schwerfälli-
ge Ausrüstung, wie z.B. markerbasierte Bewegungserfassung, angewiesen,
um den menschlichen Körper in 3D zu erfassen. Dieser Ansatz ist zwar
effektiv, aber ist auf wenige Objekte und Innenraumszenarien beschränkt.
Monokulare RGB-Kameras sind dank ihrer geringeren Kosten und ihrer
Benutzerfreundlichkeit eine attraktive Alternative, allerdings bringen sie
Herausforderungen mit sich, nämlich perspektivische Mehrdeutigkeiten
und Verdeckungen. Forscher wenden das Teile-und-herrsche-Verfahren an,
um das Problem zu vereinfachen, indem sie den Körper, das Gesicht und
die Hände mit unterschiedlichen Methoden mittels teilespezifischen Daten-
sätze abschätzen. Die Hände und das Gesicht schränken jedoch den Körper
ein und vice versa, z.B. die Position des Handgelenks ist vom Ellbogen, von
der Schulter usw. abhängig; der Teile-und-herrsche-Ansatz ignoriert diese
Beschränkungen.

In dieser Arbeit versuchen wir den ganzen menschlichen 3D-Körper
zu rekonstruieren, indem wir nur leicht zugänglichen monokularen RGB-
Bildern benutzen. Zunächst stellen wir SMPL-X vor, ein parametrisches
3D-Körpermodell, das die Form und Haltung des gesamten Körpers, die
Handgelenke und Gesichtsausdrücke darstellt. Als nächstes präsentieren
wir SMPLify-X, eine iterative Optimierungsmethode, die SMPL-X an 2D-
Bild-Keypoints anpasst. SMPLify-X liefert plausible Ergebnisse, wenn die
2D-Beobachtungen nicht verrauscht sind. Allerdings ist SMPLify-X langsam
und anfällig für lokale Minima. Um diese Probleme zu beheben, führen wir
ExPose ein, einen neuronalen Netzwerkregressor, der SMPL-X-Parameter
aus einem Bild vorhersagt, indem er die Aufmerksamkeit auf den Körper
lenkt, d.h. die Hände und das Gesicht heranzoomt, nachdem es den Körper
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vorhergesagt hat. Aus diesen vergrösserten Teilbildern die spezielle Teilnetz-
werke vorhersagen die Teilparameter. ExPose kombiniert die unabhängigen
Körper-, Hand und Gesichtsschätzungen, indem es ihnen gleichermassen
vertraut und die Korrelation zwischen den Teilen ignoriert. PIXIE fusioniert
Merkmale aus den Körper- und Teilbildern mithilfe von neuronalen Net-
zen, den sogenannten Moderatoren, bevor die endgültigen Teileparameter
vorhergesagt werden. Im Grossen und Ganzen führt die Hinzunahme der
Hände und des Gesichts zu deutlich natürlicheren und ausdrucksstärkeren
Rekonstruktionen. Die Erstellung originalgetreuer Avatare aus RGB-Bildern
erfordert eine genaue Schätzung der 3D-Körperform.

Bestehende Methoden sind zwar erfolgreich bei der Vorhersage der Kör-
perhaltung, aber bei der Körperform sind sie aufgrund fehlender Daten
mangelhaft. Um dieses Problem zu lösen, sammeln wir Internetbilder von
Modelagentur-Webseiten, die auch anthropometrischen Messungen zur
Verfügung stellen. Dabei bitten wir menschliche Kommentatoren, Bilder
und Netze anhand einer Reihe von sprachlichen Attributen zu bewer-
ten. Wir verwenden diese Informationen als schwache Überwachung, um
SHAPY zu trainieren. SHAPY ist ein neuronales Netzwerk, das die 3D-
Körperhaltung und -form aus einem RGB-Bild vorhersagt. Bei bestehenden
3D-Form-Benchmarks mangelt es an einer Vielzahl von Testpersonen oder
an einer wahrheitsgetreuen Form. Um dieses Problem anzugehen, führen
wir einen neuen Datensatz ein, den Human Bodies in the Wild (HBW), der
Bilder von Menschen und deren wahrheitsgetreuen 3D-Körperscans enthält.
SHAPY übertrifft die bestehenden 3D-Körperform-Regressoren und zeigt,
dass einfach zu beschaffende Messungen und sprachliche Attribute für eine
genaue Schätzung der 3D-Körperform ausreichend sind.

Regressoren, die 3D-Modellparameter schätzen, sind robust und genau,
passen aber oft nicht genau zu den Beobachtungen. Optimierungsansätze
passen genau zu den Daten, indem sie eine Energiefunktion minimieren,
die aus einem Datenterm und handgefertigten aufgabenspezifischen Vor-
kenntnissen zusammengesetzt ist. Das Ausbalancieren dieser Terme und die
Implementierung einer leistungsfähigen Version des Lösers ist eine zeitauf-
wendige Aufgabe. Maschinengelernte Optimierer kombinieren die Vorteile
von Regressions- und Optimierungsverfahren. Sie lernen die Vorkenntnisse
direkt aus den Daten, verzichten auf handgefertigte Vorkenntnisse und
profitieren von optimierten neuronalen Netzwerken für schnelle Inferenz.
Inspiriert durch den klassischen Levenberg-Marquardt-Algorithmus, stel-
len wir eine Aktualisierungsregel vor, die eine gewichtete Kombination
aus Gradientenabstieg und einer vom Netzwerk vorhergesagten Aktua-
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lisierung verwendet. Wir zeigen die Vielseitigkeit der vorgeschlagenen
Methode anhand von drei Problemen: (i) Face-Tracking aus dichten 2D–
Landmarken, Körperschätzung anhand von 2D-Keypoints und Kopf- und
Handpositionierung von einem auf dem Kopf getragenen Gerät. Unsere
Methode bietet eine wettbewerbsfähige Alternative zu den traditionellen
Modellanpassung-Pipelines, sowohl in Bezug auf die Genauigkeit als auch
auf die Geschwindigkeit.

Zusammenfassend führen wir SMPL-X ein, eine umfassendere Darstel-
lung des menschlichen Körpers vor, die die 3D-Körperhaltung und -form,
Gesichtsausdrücke und Handgelenke gemeinsam modelliert, und drei Me-
thoden, SMPLify-X, ExPose und PIXIE, die die SMPL-X-Parameter aus
monokularen RGB-Bildern schätzen und dabei auch die Genauigkeit und
den Realitätssinn der Vorhersagen schrittweise verbessern. Darüber hin-
aus stellen wir zwei Möglichkeiten vor, um Proxy-Annotationen der 3D-
Körperform für In-the-wild-Bilder, anthropometrische Messungen und
linguistische Attribute zu sammeln. Diese Annotationen nutzen wir, um
SHAPY zu trainieren, ein Modell, das aus Bildern und ohne explizite For-
müberwachung die genaue 3D-Form vorhersagt. Schliesslich präsentieren
wir einen vielseitigen und erfolgreichen Optimierer für die Anpassung
parametrischer Menschmodelle.
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1
I N T R O D U C T I O N

Future intelligent agents, both virtual and embodied, should be able to
reason about human motion and understand the intents and goals of people
in their environment in order to collaborate with and assist humans in their
tasks. For example, imagine a scenario where a human asks a robot for
a specific object. This can be done verbally, but also by pointing a finger
or by the person focusing their gaze on the object. Thus, it is necessary
to not only accurately estimate the body pose and shape in 3D, but also
facial expressions and hand articulation, especially since we use them to
convey subtle cues and interact with our environment. New applications of
the Metaverse [328] era, such as those in AR/VR, apparel design, virtual
try-on, and fitness, will require accurate, robust, fast and easy-to-use digital
cloning methods.

While there exist reliable hardware solutions for reconstructing 3D hu-
mans, such as 4D scanners [28, 222, 289, 395], motion capture (MoCap)
studios [150, 232, 317, 337, 417], multi-camera systems [21, 76, 139, 147, 165]
and light stages [68, 168], they come with several disadvantages. First, they
are limited to a single environment, the location of their installation, due to
the need for calibration, data storage and compute. At best one can swap
objects and furniture during data captures [123]. The cost of the necessary
hardware, for capture, compute and storage, is high, limiting the use of
such facilities to a few institutes and companies. Calibration and setup
time, e.g. placing the infrared markers on the subject in the case of MoCap,
are a severe obstacle for scaling up data collection to a large number of
people. Last but not least, collecting data that cover the full range of human
appearance, ethnicity, and shape using these tools is practically impossible,
since the majority of capture subjects comes from a single geographical
location.

Due to the above limitations, it is necessary to develop accurate and
robust 3D human reconstruction methods that utilize a cheap and easy-to-
use sensor. Monocular RGB cameras are sensors with these properties. They
are easy to use, much cheaper than the capture equipment described above,
and widely available, thanks to the widespread use of modern smartphones.
However, these advantages come at the cost of increased difficulty of the 3D
human capture problem. The scale ambiguity of RGB images makes it hard
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to estimate the absolute depth of each person in the image [334]. Predictors
need to be able to deal with occlusions from the environment [183], e.g.,
a table covering the legs of a sitting person, and self-occlusions from the
body itself, e.g. interlacing our hands during a conversation [322]. Having
data that covers the full variety of human actions, appearance and behavior,
in different environments and settings, is both a blessing and a curse. A
blessing, since in theory, we can capture all the data we wish, and a curse,
because capture methods need to be accurate and robust under all these
conditions. If all of these difficulties were not enough, the difference in size
between the body, hands, and face is an additional issue that estimation
methods have to deal with.

The community has long worked to resolve these issues and create
reliable and robust 3D human reconstruction methods. On the one hand,
in an attempt to simplify the problem, it adopted a divide-and-conquer
approach, with separate methods, benchmarks, and datasets for 2D/ 3D
body [7, 23, 34, 109, 115, 152, 163, 169, 262, 272, 291, 321, 324, 403, 420],
hands [20, 36, 83, 126, 151, 193, 247, 296, 365, 427] and face estimation [6,
33, 39, 65, 79, 87, 88, 238, 302, 342, 346]. Initial work attempts to estimate
the human body, face and hands, with energy minimization methods [23,
34, 102, 138, 266, 403]. Inspired by the success of deep neural networks
for image classification [129, 192, 217, 320], object detection [45, 128, 286]
and natural language processing (NLP) [361], neural networks are now the
de facto tool used to estimate model parameters from observations. On the
other hand, there is an ongoing effort to create richer representations of the
human body, starting from simple 2D dots [159] to 3D body surfaces [15,
166, 222, 364, 387], 3D voxel grids [359, 421], occupancy functions [50, 240,
241, 428], point clouds [227, 229] and distance fields [8, 49, 264, 265, 299,
300, 348, 366, 385] and more recently volumetric representations [9, 219, 220,
259, 274, 275, 283, 315, 369, 374, 386, 392, 420].

Part I: Expressive 3D reconstruction from images: In Chapter 2, we start
by introducing SMPL-X, a holistic 3D body model that jointly models body
pose and shape, hand articulation and facial expression. We then propose
an iterative optimization method, named SMPLify-X, that fits SMPL-X to
2D image keypoints. Using SMPLify-X, we collect a large dataset of images
and corresponding SMPL-X parameters, with the help of human annotators,
who accept or reject invalid fits after seeing the projection of the estimated
body on the image. In this way, we circumvent the need for outdoor captures
with a multi-view setup or extra instrumentation, such as IMUs [142, 235].
The next natural step would be to train a neural network regressor with

2



this data, to overcome SMPLify-X’s slow runtime and its sensitivity to
initialization.

However, we observe that a single network is unable to jointly predict
the body, hands, and face from an image in a single step. This is caused by
the difference in size between the body, hands and face, with the latter two
occupying very few images pixels compared to the body. We propose to use
body-driven attention to resolve this issue, i.e. first predict the body and
then zoom-in on the hands and face to refine the corresponding parameters
with part specific networks. An important advantage of this decomposition
is that we can also use separate body, hand and face datasets to train the
respective networks. ExPose, described in Chapter 3, is able to accurately
reconstruct the whole body, at a fraction of the runtime of SMPLify-X.
Nevertheless, ExPose still does not utilize the full image information, since
the part networks only “see” the respective part image, and uses a naive
parameter integration mechanism, i.e. it simply copies the part predictions
irrespective of context. PIXIE, described in Chapter 4, resolves these issues
using moderators, which are neural networks that dynamically aggregate
features from the body and part images, using a learned confidence score.
In addition to SMPL-X parameters, PIXIE predicts lighting, face albedo
and wrinkle details, only when the face moderator’s confidence is above
a threshold. Furthermore, it uses gender labels during training to select
the appropriate gender shape prior, to infer "gendered" 3D body shapes
when possible. The use of an expressive body model, like SMPL-X, and
the above prediction techniques leads to higher fidelity reconstruction of
humans from RGB images.

Part II: 3D Shape estimation from metric and semantic attributes: Al-
though PIXIE’s gender shape prior brings a noticeable qualitative improve-
ment compared to prior methods, progress in 3D body shape estimation
lags behind progress in pose. The reason behind this gap is the lack of
in-the-wild images with 3D shape training and evaluation data. In the case
of 3D pose estimation, 2D keypoints have been proven to be an effective
source of supervision, however there is no equivalent for shape. In Chap-
ter 5, we introduce a solution to this problem by collecting images from
online fashion model agencies with anthropometric measurements of each
model. The measurements, however, do not fully constrain body shape.
While humans cannot estimate metric quantities in images, such as arm
length, they can reliably rate images of people according to shape attributes,
such as “short/tall”, “long legs” or “pear shaped”. BodyTalk [329] shows
that it is possible to predict metrically accurate 3D shape from the aver-
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age scores of these linguistic shape attributes. Inspired by this, we ask
human annotators to rate a dataset of 3D meshes and the collected fashion
model images according to the pre-defined set of attributes. Using the
3D meshes, their attributes and the anthropometric measurements we can
define mappings from attributes, measurement to shape and vice-versa. We
then train SHAPY, a neural network that predicts 3D shape from images.
Supervision for the shape prediction branch comes from novel shape-aware
losses that employ the above mappings and data: (i) We compute measure-
ments [281] from the estimated 3D shape and penalize their difference from
the ground-truth measurements, downloaded from the model agency web-
sites. (ii) We learn a “Shape-to-Attributes” function that converts a 3D shape
to attribute scores. When training an image regressor, we use it to convert
the estimated shape to scores and penalize their difference from the human
annotations. (iii) Next, we learn the inverse mapping, “Attributes-to-shape”,
using it to convert the human attribute scores to shape parameters, which
act as supervision for the network. To evaluate the accuracy of 3D human
shape estimation methods, we introduce a new benchmark, “Human Bodies
in the Wild”, that contains images and 3D body shape annotations, and find
that SHAPY outperforms existing methods. In this way, we can sidestep the
lack of in-the-wild images with 3D shape annotations using easy-to-obtain
anthropometric measurements and linguistic shape attributes.

Part III: Learned optimization for 3D morphable model fitting: Al-
though neural networks can predict 3D model parameters robustly and
accurately, given enough data and proper supervision, they often fail to
tightly fit the observations. For example, the predicted body pose parame-
ters might produce a mesh that does not perfectly align with the subject’s
limbs [410]. Classic optimization methods on the other hand can tightly fit a
parametric model to the input observations through iterative minimization
of a hand-crafted energy term. The energy is composed of a data term
that measures deviation from the observations and a set of priors that
encode knowledge about the problem’s structure. Although optimization-
based methods are effective, they require significant effort to formulate
and balance the weights of each term, and a good initialization point to
achieve convergence to a satisfactory minimum. Furthermore, real-time
performance is impossible to achieve without significant time investments
in custom implementations from domain experts. Learned continuous op-
timization offers an attractive solution, combining the advantages of both
regression- and optimization-only methods. Learned optimizers learn priors
directly from the data, removing the need for hand-crafted heuristics, and
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benefit from optimized neural network frameworks for fast inference. We
build upon these features and propose a neural fitter for 3D human model
fitting, inspired from Levenberg-Marquardt (LM) [199, 236], that (i) keeps
information across iterations, (ii) controls the learning rate of each variable
independently and (iii) combines gradient descent with a network-predicted
update. We apply our method on the problem of fitting a body model to 2D
keypoints, face model fitting to 2D dense landmarks [376, 377] and full body
fitting to head and hand signals from a head-mounted device [75]. The use
of different tasks and settings illustrates the versatility of our method. Quan-
titative evaluation on all three settings demonstrates the effectiveness of our
learned optimizer, which outperforms classic optimization and regression
baselines.

In summary, this thesis introduces a new holistic and expressive 3D
representation of the human body, SMPL-X, and an iterative optimization
method to estimate SMPL-X parameters from monocular RGB images. Us-
ing SMPLify-X, we collect a training set of images and SMPL-X parameters.
We then use this data to train a regressor that predicts SMPL-X parameters
from an RGB image, but observe that it can only estimate a rough configu-
ration of the hands and face, due to their smaller size compared to the body.
ExPose overcomes this issue using body-driven attention, i.e. localizing the
hands and face from the body, extracting high-resolution crops and improv-
ing the rough estimate with dedicated refinement modules. PIXIE employs
full-body context to improve the accuracy of hand and face prediction
in the presence of ambiguities, such as occlusions. PIXIE uses moderator
networks that estimate the confidence of body-part experts and computes a
weighted average of their features using this confidence value. By combin-
ing SMPLify-X’s training data, ExPose’s body-driven attention and PIXIE’s
moderators we can train accurate and fast neural network regressors for
expressive 3D body estimation. Next, we show how to use weaker shape
annotations, namely anthropometric measurements and linguistic attribute
scores , to improve 3D body shape prediction. Finally, we propose a learned
optimization method for human model fitting problems that combines the
advantages of regression and optimization approaches. This learned opti-
mizer is effective, outperforming the baseline regression and optimization
methods, and versatile, as it is easily applicable to different tasks.
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2
E X P R E S S I V E B O D Y C A P T U R E : 3 D H A N D S , FA C E , A N D
B O D Y F R O M A S I N G L E I M A G E

Figure 2.1: Communication and gesture rely on the body pose, hand pose, and facial
expression, all together. The major joints of the body are not sufficient to represent
this and current 3D models are not expressive enough. In contrast to prior work,
our approach estimates a more detailed and expressive 3D model from a single
image. From left to right: RGB image, major joints, skeleton, SMPL (female), SMPL-X
(female). The hands and face in SMPL-X enable more holistic and expressive body
capture.

2.1 introduction

Humans are often a central element in images and videos. Understanding
their posture, the social cues they communicate, and their interactions with
the world is critical for holistic scene understanding. Recent methods have
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Figure 2.2: We learn a new 3D model of the human body called SMPL-X that jointly
models the human body, face and hands. We fit the female SMPL-X model with
SMPLify-X to single RGB images and show that it captures a rich variety of natural
and expressive 3D human poses, gestures and facial expressions. Image source:
https://www.gettyimages.de/search/stack/546047069.

shown rapid progress on estimating the major body joints, hand joints
and facial features in 2D [44, 148, 319]. Our interactions with the world,
however, are fundamentally 3D and recent work has also made progress
on the 3D estimation of the major joints and rough 3D pose directly from
single images [34, 169, 262, 272].

To understand human behavior, however, we have to capture more than
the major joints of the body – we need the full 3D surface of the body, hands
and the face. There is no system that can do this today due to several major
challenges including the lack of appropriate 3D models and rich 3D training
data. Figure 2.1 illustrates the problem. The interpretation of expressive
and communicative images is difficult using only sparse 2D information or
3D representations that lack hand and face detail. To address this problem,
we need two things. First, we need a 3D model of the body that is able to
represent the complexity of human faces, hands, and body pose. Second,
we need a method to extract such a model from a single image.

Advances in neural networks and large datasets of manually labeled
images have resulted in rapid progress in 2D human “pose” estimation.
By “pose”, the field often means the location of the major body joints. This
is not sufficient to understand human behavior as illustrated in Fig. 2.1.
OpenPose [43, 44, 319] expands this to include the 2D hand joints and 2D
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facial features. While this captures much more about the communicative
intent, it does not support reasoning about surfaces and human interactions
with the 3D world.

Models of the 3D body have focused on capturing the overall shape
and pose of the body, excluding the hands and face [10, 11, 15, 121, 222].
There is also an extensive literature on modelling hands [176, 239, 260, 261,
293, 308, 325, 349, 356] and faces [12, 33, 35, 38, 41, 206, 273, 362, 391] in
3D but in isolation from the rest of the body. Only recently has the field
begun modeling the body together with hands [293], or together with the
hands and face [166]. The Frank model [166], for example, combines a
simplified version of the SMPL body model [222], with an artist-designed
hand rig, and the FaceWarehouse [41] face model. These disparate models
are stitched together, resulting in a model that is not fully realistic.

Here we learn a new, holistic, body model with face and hands from
a large corpus of 3D scans. The new SMPL-X model (SMPL eXpressive) is
based on SMPL and retains the benefits of that model: compatibility with
graphics software, simple parametrization, small size, efficient, differen-
tiable, etc. We combine SMPL with the FLAME head model [206] and the
MANO hand model [293] and then register this combined model to 5586
3D scans that we curate for quality. By learning the model from data, we
capture the natural correlations between the shape of bodies, faces and
hands and the resulting model is free of the artifacts seen with Frank. The
expressivity of the model can be seen in Fig. 2.2 where we fit SMPL-X to
expressive RGB images, as well as in Fig. 2.5 where we fit SMPL-X to im-
ages of the public LSP dataset [160]. SMPL-X is freely available for research
purposes.

Several methods use deep learning to regress the parameters of SMPL
from a single image [169, 262, 272]. To estimate a 3D body with the hands
and face though, there exists no suitable training dataset. To address this,
we follow the approach of SMPLify. First, we estimate 2D image features
“bottom up” using OpenPose [44, 319, 371], which detects the joints of the
body, hands, feet, and face features. We then fit the SMPL-X model to these
2D features “top down”, with our method called SMPLify-X. To do so, we
make several significant improvements over SMPLify. Specifically, we learn
a new, and better performing, pose prior from a large dataset of motion
capture data [221, 232] using a variational auto-encoder. This prior is criti-
cal because the mapping from 2D features to 3D pose is ambiguous. We
also define a new (self-) interpenetration penalty term that is significantly
more accurate and efficient than the approximate method in SMPLify; it
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remains differentiable. We train a gender detector and use this to automat-
ically determine what body model to use, either male, female or gender
neutral. Finally, one motivation for training direct regression methods to
estimate SMPL parameters is that SMPLify is slow. Here we address this
with a PyTorch implementation that is at least 8 times faster than the corre-
sponding Chumpy implementation, by leveraging the computing power of
modern GPUs. Examples of this SMPLify-X method are shown in Fig. 2.2.

To evaluate the accuracy, we need new data with full-body RGB images
and corresponding 3D ground truth bodies. To that end, we curate a new
evaluation dataset containing images of a subject performing a wide variety
of poses, gestures and expressions. We capture 3D body shape using a
scanning system and we fit the SMPL-X model to the scans. This form of
pseudo ground-truth is accurate enough to enable quantitative evaluations
for models of body, hands and faces together. We find that our model and
method perform significantly better than related, and less powerful, models,
resulting in natural and expressive results.

We believe that this is a significant step towards expressive capture of
bodies, hands, and faces together from a single RGB image. We make
available for research purposes the SMPL-X model, SMPLify-X code, trained
networks, model fits, and the evaluation dataset at https://smpl-x.is.tue.
mpg.de/.

2.2 related work

2.2.1 Modeling the body

Bodies, Faces and Hands: The problem of modeling the 3D body has
previously been tackled by breaking the body into parts and modeling
these parts separately. We focus on methods that learn statistical shape
models from 3D scans.

Blanz and Vetter [33] pioneered this direction with their 3D morphable
face model. Numerous methods since then have learned 3D face shape
and expression from scan data; see [38, 429] for recent reviews. A key
feature of such models is that they can represent different face shapes
and a wide range of expressions, typically using blend shapes inspired
by FACS [80]. Most approaches focus only on the face region and not the
whole head. FLAME [206], in contrast, models the whole head, captures
3D head rotations, and also models the neck region; we find this critical
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for connecting the head and the body. None of these methods, model
correlations in face shape and body shape.

The availability of 3D body scanners enabled learning of body shape
from scans. In particular the CAESAR dataset [290] opened up the learning
of shape [10]. Most early work focuses on body shape using scans of people
in roughly the same pose. Anguelov et al. [15] combined shape with scans
of one subject in many poses to learn a factored model of body shape
and pose based on triangle deformations. Many models followed this,
either using triangle deformations [51, 97, 121, 133, 278] or vertex-based
displacements [11, 122, 222], however they all focus on modeling body
shape and pose without the hands or face. These methods assume that the
hand is either in a fist or an open pose and that the face is in a neutral
expression.

Similarly, hand modeling approaches typically ignore the body. Addi-
tionally, 3D hand models are typically not learned but either are artist
designed [325], based on shape primitives [239, 261, 308], reconstructed
with multiview stereo and have fixed shape [25, 356], use non-learned
per-part scaling parameters [67], or use simple shape spaces [349]. Only
recently [176, 293] have learned hand models appeared in the literature.
Khamis et al. [176] collect partial depth maps of 50 people to learn a model
of shape variation, however they do not capture a pose space. Romero et
al. [293] on the other hand learn a parametric hand model (MANO) with
both a rich shape and pose space using 3D scans of 31 subjects in up to 51
poses, following the SMPL [222] formulation.

Unified Models: The most similar models to ours are Frank [166],
SMPL+H [293] and GHUM/GHUML [387]. Frank stitches together three
different models: SMPL (with no pose blend shapes) for the body, an artist-
created rig for the hands, and the FaceWarehouse model [41] for the face.
The resulting model is not fully realistic. SMPL+H combines the SMPL
body with a 3D hand model that is learned from 3D scans. The shape
variation of the hand comes from full body scans, while the pose dependent
deformations are learned from a dataset of hand scans. SMPL+H does
not contain a deformable face. GHUM and the lower resolution GHUML
(ite) are unified models of the body, hand and face, trained end-to-end on
a dataset of high-resolution body scans and close-ups of the hands and
face. In contrast to SMPL, GHUM/GHUML have non-linear shape and
expression spaces, implemented as variational auto-encoders (VAE) [179].

We start from the publicly-available SMPL+H [234] and add the publicly-
available FLAME head model [94] to it. Unlike Frank, however, we do not
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simply graft this onto the body. Instead we take the full model and fit it to
5586 3D scans and learn the shape and pose-dependent blend shapes. This
results in a natural looking model with a consistent parameterization. Being
based on SMPL, it is differentiable and easy to swap into applications that
already use SMPL.

2.2.2 Inferring the body

There are many methods that estimate 3D faces from images or RGB-D [429]
as well as methods that estimate hands from such data [396]. While there
are numerous methods that estimate the location of 3D joints from a single
image, here we focus on methods that extract a full 3D body mesh.

Several methods estimate the SMPL model from a single image [169, 195,
262, 272]. This is not trivial due to a paucity of training images with paired
3D model parameters. To address this, SMPLify [34] detects 2D image fea-
tures “bottom up” and then fits the SMPL model to these “top down” in an
optimization framework. In [195] these SMPLify fits are used to iteratively
curate a training set of paired data to train a direct regression method.
HMR [169] trains a model without paired data by using 2D keypoints and
an adversary that knows about 3D bodies. Like SMPLify, NBF [262] uses
an intermediate 2D representation (body part segmentation) and infers
3D pose from this intermediate representation. MonoPerfCap [388] infers
3D pose while also refining surface geometry to capture clothing. These
methods estimate only the 3D pose of the body without the hands or face.

There are also many multi-camera setups for capturing 3D pose, 3D
meshes (performance capture), or parametric 3D models [24, 40, 70, 99, 139,
141, 162, 216, 244, 288, 327, 395]. Most relevant is the Panoptic studio [162]
which shares our goal of capturing rich, expressive, human interactions.
In [166], the Frank model parameters are estimated from multi-camera data
by fitting the model to 3D keypoints and 3D point clouds. The capture
environment is complex, using 140 VGA cameras for the body, 480 VGA
cameras for the feet, and 31 HD cameras for the face and hand keypoints.
We aim for a similar level of expressive detail but from a single RGB image.

2.3 technical approach

In the following we describe SMPL-X (Sec. 2.3.1), and our approach for
fitting SMPL-X to single RGB images (Sec. 2.3.2). Compared to SMPLify [34],
SMPLify-X uses a better pose prior (Sec. 2.3.3), a more detailed collision
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penalty (Sec. 2.3.4), gender detection (Sec. 2.3.5), and a faster PyTorch
implementation (Sec. 2.3.6).

2.3.1 Unified model: SMPL-X

We create a unified model, called SMPL-X, for SMPL eXpressive, with shape
parameters trained jointly for the face, hands and body. SMPL-X uses
standard vertex-based linear blend skinning [200] with learned corrective
blend shapes, has V = 10, 475 vertices and J = 54 joints, which includes
joints for the neck, jaw, eyeballs and fingers. SMPL-X is defined by a function
M (θ, β, ψ) : R|θ|×|β|×|ψ| → R3V, parameterized by the pose θ ∈ R3(J+1)

where K is the number of body joints in addition to a joint for global
rotation. We decompose the pose parameters θ into: θ f for the jaw joint, θh
for the finger joints, and θb for the remaining body joints. The joint body,
face and hands shape parameters are noted by β ∈ R|β| and the facial
expression parameters by ψ ∈ R|ψ|. More formally:

M (β, θ, ψ) = LBS (MT (β, θ, ψ) , JT (β) , θ;W) (2.1)

MT (β, θ, ψ) = M̄T + BS (β;S) + BE (ψ; E) + BP (θ;P) (2.2)

where BS (β;S) = ∑
|β|
n=1 βnSn is the shape blend shape function, β are linear

shape coefficients, |β| is their number, Sn ∈ R3V are orthonormal principal
components of vertex displacements capturing shape variations due to

different person identity, and S =
[
S1, . . . ,S|β|

]
∈ R3V×|β| is a matrix of

all such displacements. BP (θ;P) : R|θ| → R3V is the pose blend shape
function, which adds corrective vertex displacements to the template mesh
M̄T as in SMPL [221]:

BP (θ;P) =
9J

∑
n=1

(Rn(θ)− Rn(θ
∗))Pn, (2.3)

where R : R|θ| → R9J is a function mapping the pose vector θ to a vector of
concatenated part-relative rotation matrices, computed with the Rodrigues
formula [37, 252, 279] and Rn(θ) is the nth element of R(θ), θ∗ is the pose
vector of the rest pose, Pn ∈ R3V are again orthonormal principal compo-
nents of vertex displacements, and P = [P1, . . . ,P9J] ∈ R3V×9J is a matrix
of all pose blend shapes. BE (ψ; E) = ∑

|ψ|
n=1 ψnE is the expression blend

shape function, where E are principal components capturing variations due
to facial expressions and ψ are PCA coefficients. Since 3D joint locations
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JT vary between bodies of different shapes, they are a function of body
shape JT(β) = J (M̄T + BS (β;S)), where J is a sparse linear regressor
that regresses 3D joint locations from mesh vertices. A standard linear blend
skinning function LBS(·) [200] rotates the vertices in MT (·) around the
estimated joints JT(β) smoothed by blend weightsW ∈ RV×J.

We start with an artist designed 3D template, whose face and hands
match the templates of FLAME [206] and MANO [293]. We fit the template
to four datasets of 3D human scans to get 3D alignments as training data for
SMPL-X. The shape space parameters, {S}, are trained on 3800 alignments
in an A-pose capturing variations across identities [290]. The body pose
space parameters, {W ,P ,J }, are trained on 1786 alignments in diverse
poses. Since the full body scans have limited resolution for the hands and
face, we leverage the parameters of MANO [293] and FLAME [206], learned
from 1500 hand and 3800 head high resolution scans respectively. More
specifically, we use the pose space and pose corrective blendshapes of
MANO for the hands and the expression space E of FLAME.

The fingers have 30 joints, which correspond to 90 pose parameters (3
DOF per joint as axis-angle rotations). SMPL-X uses a lower dimensional
PCA pose space for the hands such that θh = ∑

|h |
n=1 hnH, where H are

principal components capturing the finger pose variations and h are the
corresponding PCA coefficients. As noted above, we use the PCA pose
space of MANO, that is trained on a large dataset of 3D articulated human
hands. The total number of model parameters in SMPL-X is 119: 75 for
the global body rotation and { body, eyes , jaw } joints, 24 parameters for
the lower dimensional hand pose PCA space, 10 for subject shape and 10
for the facial expressions. Additionally there are separate male and female
models, which are used when the gender is known, and a shape space
constructed from both genders for when gender is unknown. SMPL-X is
realistic, expressive, differentiable and easy to fit to data.

2.3.2 SMPLify-X: SMPL-X from a single image

To fit SMPL-X to single RGB images (SMPLify-X), we follow SMPLify [34]
but improve every aspect of it. We formulate fitting SMPL-X to the image as
an optimization problem, where we seek to minimize the objective function

E(β, θ, ψ) = EJ + λθb Eθb + λθ f Eθ f + λh Eh+

λαEα + λβEβ + λψEψ + λCEC (2.4)
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where θb, θ f and h are the pose vectors for the body, face and the two
hands respectively, and θ is the full set of optimizable pose parameters.
The body pose parameters are a function θb(Z), where Z ∈ R32 is a lower-
dimensional pose space described in Sec. 2.3.3. EJ(β, θ; K, jest) is the data
term as described below, while the terms Eh (h), Eθ f (θ f ), Eβ(β) and Eψ(ψ)

are simple L2 priors for the hand pose, facial pose, body shape and facial
expressions, penalizing deviation from the neutral state. Since the shape
space of SMPL-X is scaled for unit variance, similarly to SMPL+H [293],
Eβ(β) = ∥β∥2 describes the Mahalanobis distance between the shape pa-
rameters being optimized and the shape distribution in the training dataset
of SMPL-X. Eα(θb) = ∑i∈(elbows,knees) exp(θi) follows Bogo et al. [34] and is
a simple prior penalizing extreme bending only for elbows and knees. We
further employ Eθb(θb), which is a VAE-based body pose prior (Sec. 2.3.3),
while EC(θb,h, f , β) is an interpenetration penalty (Sec. 2.3.4). Finally, λ de-
notes weights that steer the influence of each term in Eq. (2.4). We empiri-
cally find that an annealing scheme for λ helps optimization (Sec. 2.3.6).

For the data term we use a re-projection loss to minimize the weighted
robust distance between estimated 2D joints jest and the 2D projection of
the corresponding posed 3D joints Ji(θ, β) of SMPL-X for each joint i, where
Jiθ(·) denotes the joints transformed according to the pose θ after traversing
the kinematic tree. Similar to Bogo et al. [34], the data term is:

EJ(β, θ; K, jest) =
J

∑
i

γiωiρ(Πp(Ji(β, θ); K)− jest,i) (2.5)

where Πp(·; K) denotes the 3D to 2D perspective projection function with in-
trinsic camera parameters K. For the 2D detections we rely on the OpenPose
library [44, 319, 371], which provides body, hands, face and feet keypoints
jointly for each person in an image. To account for noise in the detections,
the contribution of each joint in the data term is weighted by the detection
confidence score ωi, while γi are per-joint weights for annealed optimiza-
tion, as described in Sec. 2.3.6. Finally, ρ denotes a robust Geman-McClure
error function [107] for down weighting noisy detections.

2.3.3 Variational human body pose prior

We seek a prior over body pose that penalizes impossible poses while
allowing possible ones. SMPLify uses an approximation to the negative
log of a Gaussian mixture model trained on MoCap data. While effective,
we find that the SMPLify prior is not sufficiently strong. Consequently, we
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train our body pose prior, VPoser, using a variational autoencoder [179],
which learns a latent representation of human pose and regularizes the
distribution of the latent code to be a normal distribution. We train our prior
using the AMASS [232] dataset. Our training and test data respectively
consist of roughly 1M, and 65k poses, in rotation matrix representation.
Details on the data preparation procedure is given in Sec. A.8.

The training loss of the VAE is formulated as:

Ltotal = c1LKL + c2Lrec + c3Lorth + c4Ldet1 + c5Lreg (2.6)

LKL = KL(q(Z|R)||N (0, I)) (2.7)

Lrec = ||R− R̂||22 (2.8)

Lorth = ||R̂R̂
′ − I||22 (2.9)

Ldet1 = |det(R̂)− 1| (2.10)

Lreg = ||ϕ||22, (2.11)

where Z ∈ R32 is the latent space of the autoencoder, R ∈ SO(3) are
3 × 3 rotation matrices for each joint as the network input and R̂ is a
similarly shaped matrix representing the output. The Kullback-Leibler
term in Eq. (2.7), and the reconstruction term in Eq. (2.8) follow the VAE
formulation in [179], while their role is to encourage a normal distribution
on the latent space, and to make an efficient code to reconstruct the input
with high fidelity. Equations (2.9) and (2.10) encourage the latent space to
encode valid rotation matrices. Finally, Eq. (2.11) helps prevent over-fitting
by encouraging smaller network weights ϕ. Implementation details can be
found in Sec. A.8.

To employ VPoser in the optimization, rather than to optimize over θb
directly in Eq. (2.4), we optimize the parameters of a 32 dimensional latent
space with a quadratic penalty on Z and transform this back into joint
angles θb in axis-angle representation. This is analogous to how hands are
treated except that the hand pose θh is projected into a linear PCA space
and the penalty is on the linear coefficients.

2.3.4 Collision penalizer

When fitting a model to observations, there are often self-collisions and
penetrations of several body parts that are physically impossible. Our
approach is inspired by SMPLify, which penalizes penetrations with an
underlying collision model based on shape primitives, i.e. an ensemble
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of capsules. Although this model is computationally efficient, it is only a
rough approximation of the human body.

For models like SMPL-X, that also model the fingers and facial details,
a more accurate collision model in needed. To that end, we employ the
detailed collision-based model for meshes from [25, 356]. We first detect
a list of colliding triangles C by employing Bounding Volume Hierarchies
(BVH) [341] and compute local conic 3D distance fields Ψ defined by the
triangles C and their normals n. Penetrations are then penalized by the
depth of intrusion, efficiently computed by the position in the distance field.
For two colliding triangles fs and ft, intrusion is bi-directional; the vertices
vt of ft are the intruders in the distance field Ψ fs of the receiver triangle fs
and are penalized by Ψ fs(vt), and vice-versa. Thus, the collision term EC in
the objective (Eq. (2.4)) is defined as

EC(θ) = ∑
( fs(θ), ft(θ))∈C

{
∑

vs∈ fs

∥ −Ψ ft(vs)ns∥2+

∑
vt∈ ft

∥ −Ψ fs(vt)nt∥2
}

.
(2.12)

For technical details about Ψ, as well as details about handling collisions
for parts with permanent or frequent self-contact we redirect the reader
to [25, 356] and Sec. A.2. For computational efficiency, we use a highly
parallelized implementation of BVH following [172] with a custom CUDA
kernel wrapped around a custom PyTorch operator.

2.3.5 Deep gender classifier

Humans of different genders have different proportions and shapes. Con-
sequently, using the appropriate body model to fit 2D data means that we
should apply the appropriate shape space. We know of no previous method
that automatically takes gender into account in fitting 3D human pose. Here,
we train a gender classifier that takes as input an image containing the full
body and the OpenPose joints, and assigns a gender label to the detected
person. To this end, we first annotate through Amazon Mechanical Turk
a large dataset of images from LSP [160], LSP-extended [161], MPII [13],
COCO [215], and LIP dataset [212], while following their official splits for
train and test sets. The final dataset includes 50216 training examples and
16170 test samples, see Sec. A.9. We use this dataset to fine tune a pretrained
ResNet18 [130] for binary gender classification. Moreover, we threshold
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the computed class probabilities, by using a class-equalized validation
set, to obtain a good trade-off between discarded, correct, and incorrect
predictions. We choose a threshold of 0.9 for accepting a predicted class,
which yields 62.38% correct predictions, and 7.54% incorrect predictions on
the validation set. At test time, we run the detector and fit the appropriate
gendered model. When the detected class probability is below the threshold,
we fit the gender-neutral body model.

2.3.6 Optimization

SMPLify employs Chumpy and OpenDR [223] which makes the optimiza-
tion slow. To keep optimization of Eq. (2.4) tractable, we use PyTorch and
the Limited-memory BFGS optimizer (L-BFGS) [258] with strong Wolfe line
search. Implementation details can be found in Sec. A.3.

We optimize Eq. (2.4) with a multistage approach, similar to [34]. We
assume that we know the exact or an approximate value for the focal length
of the camera. Then we first estimate the unknown camera translation
and global body orientation (see [34]). We then fix the camera parameters
and optimize body shape, β, and pose, θ. Empirically, we found that an
annealing scheme for the weights γ in the data term EJ (Eq. (2.5)) helps
optimization of the objective (Eq. (2.4)) to deal with ambiguities and local
optima. This is mainly motivated by the fact that small body parts like
the hands and face have many keypoints relative to their size, and can
dominate in Eq. (2.4), encouraging the optimizer to search first for local
optimums for the hands and face. Although these local optima may satisfy
the hand and face constraint, they are far from the solution and produce
suboptimal body pose estimates.

In the following, we denote by γb the weights corresponding to the main
body keypoints, γh the ones for hands and γ f the ones for facial keypoints.
We then follow three steps, starting with high regularization to mainly
refine the global body pose, and gradually increase the influence of hand
keypoints to refine the pose of the arms. After converging to a body pose
estimate, we increase the influence of both hands and facial keypoints to
capture expressivity. Throughout the above steps the weights λα, λβ, λψ in
Eq. (2.4) start with high regularization that gradually lowers to allow for
better fitting, The only exception is λC that gradually increases while the
influence of hands gets stronger in EJ and more collisions are expected.
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2.4 experiments

2.4.1 Evaluation datasets

Despite the recent interest in more expressive models [166, 293] there exists
no dataset containing images with ground-truth shape for bodies, hands
and faces together. Consequently, we create a dataset for evaluation from
currently available data through fitting and careful curation.

Expressive hands and faces dataset (EHF): We begin with the SMPL+H
dataset [234], obtaining one full body RGB image per frame. We then align
SMPL-X to the 4D scans following [293]. An expert annotator manually
curated the dataset to select 100 frames that can be confidently considered
pseudo ground-truth, according to alignment quality and interesting hand
poses and facial expressions. The pseudo ground-truth meshes enable
the use of vertex-to-vertex (V2V) error metric [222, 272], in contrast to the
common paradigm of reporting 3D joint error, which does not capture
surface errors and rotations along the bones.

2.4.2 Qualitative & quantitative evaluations

To test the effectiveness of SMPL-X and SMPLify-X, we perform compar-
isons to the most related models, namely SMPL [222], SMPL+H [293], and
Frank [166]. We fit SMPL-X to the EHF images to evaluate both qualita-
tively and quantitatively. Note that we use only 1 image and 2D joints as
input, while previous methods use much more information; i.e. 3D point
clouds [166, 293] and joints [166]. Specifically [222, 293] employ 66 cameras
and 34 projectors, while Joo et al. [166] employ more than 500 cameras.

We first compare to SMPL, SMPL+H and SMPL-X on the EHF dataset and
report results in Tab. 2.1. The table reports mean vertex-to-vertex (V2V) error
and mean 3D body joint error after Procrustes alignment with the ground-
truth 3D meshes and body (only) joints respectively. To ease numeric
evaluation, for this table only, we “simulate” SMPL and SMPL+H with a
SMPL-X variation with locked degrees of freedom, noted as “SMPL” and
“SMPL+H” respectively. As expected, the errors show that the standard
mean 3D joint error fails to accurately capture the difference in model
expressivity. On the other hand, the much stricter V2V metric shows that
enriching the body with finger and face modeling results in lower errors.
We also fit SMPL with additional features for parts that are not properly
modeled, e.g. finger features. The additional features result in an increasing
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Model Keypoints V2V (mm) Joint error (mm)

“SMPL” Body 57.6 63.5

“SMPL” Body+Hands+Face 64.5 71.7

“SMPL+H” Body+Hands 54.2 63.9

SMPL-X Body+Hands+Face 52.9 62.6

Table 2.1: Quantitative comparison of “SMPL”, “SMPL+H” and SMPL-X, as de-
scribed in Sec. 2.4.2, fitted with SMPLify-X on the EHF dataset. We report the mean
vertex-to-vertex (V2V) and the standard mean 3D body (only) joint error in mm.
The table shows that richer modeling power results in lower errors.

Version V2V (mm)

SMPLify-X 52.9

gender neutral model 58.0

replace VPoser with GMM 56.4

no collision term 53.5

Table 2.2: Ablative study for SMPLify-X on the EHF dataset. The numbers reflect
the contribution of each component in overall accuracy.

error, pointing to the importance of richer and more expressive models. We
report similar qualitative comparisons in Sec. A.1.

We then perform an ablative study, summarized in Tab. 2.2, where we re-
port the mean vertex-to-vertex (V2V) error. SMPLify-X with a gender-specific
model achieves 52.9 mm error. The gender neutral model is easier to use,
as it does not need gender detection, but comes with a small compromise
in terms of accuracy. Replacing VPoser with the GMM of SMPLify [34]
increases the error to 56.4 mm, showing the effectiveness of VPoser. Finally,
removing the collision term increases the error as well, to 53.5 mm, while
also allowing non physically plausible pose estimates.

The closest comparable model to SMPL-X is Frank [166]. Since Frank is
not available, nor are the fittings to [66], we show images of results found
online. Figure 2.3 shows Frank fittings to 3D joints and point clouds, i.e.
using more than 500 cameras. Compare this with SMPL-X fitting, which is
done with SMPLify-X using only 1 RGB image with 2D joints. For a more
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Figure 2.3: From left to right: (i) Reference RGB, (ii) [166]: > 500 cameras, (iii) Ours
> 500 cameras and (iv) Ours 1 camera. Qualitative comparison of our gender neu-
tral model (top, bottom rows) or gender specific model (middle) against Frank [166]
on some of their data. To fit Frank, Joo et al. [166] employ both 3D joints and a point
cloud, using more than 500 cameras to obtain the 3D information. In contrast, our
method produces a realistic and expressive reconstruction using only 2D joints. We
show results using the 3D joints of [166] projected in 1 camera view (third column),
as well as using joints estimated from only 1 image (last column), to show the
influence of noise in 2D joint detection. Compared to Frank, our model does not
have skinning artifacts around the joints, e.g. elbows.

22



Figure 2.4: Comparison of the hands-only approach of Panteleris et al. [266] (middle)
against our approach with the male model (right). Both approaches depend on
OpenPose. In case of good detections both perform well (top). In case of noisy 2D
detections (bottom) our holistic model shows increased robustness.

direct comparison here, we fit SMPL-X to 2D projections of the 3D joints
that [166] used for Frank. Although we use much less data, SMPL-X shows at
least similar expressivity to Frank for both the face and hands. Since Frank
does not use pose blend shapes, it suffers from skinning artifacts around
the joints, e.g. elbows, as clearly seen in Fig. 2.3. SMPL-X by contrast, is
trained to include pose blend shapes and does not suffer from this. As a
result it looks more natural and realistic.
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Figure 2.5: Qualitative results of SMPL-X for the in-the-wild images of the LSP
dataset [160]. A strong holistic model like SMPL-X results in natural and expressive
reconstruction of bodies, hands and faces. Gray color depicts the gender-specific
model for confident gender detections. Blue is the gender-neutral model that is used
when the gender classifier is uncertain.

To further show the value of a holistic model of the body, face and
hands, in Fig. 2.4 we compare SMPL-X and SMPLify-X to the hands-only
approach of [266]. Both approaches employ OpenPose for 2D joint detection,
while [266] further depends on a hand detector. As seen in Fig. 2.4, in case
of good detections both approaches perform nicely, though in case of noisy
detections, SMPL-X shows increased robustness due to the context of the
body. We further perform a quantitative comparison after aligning the
resulting fits to EHF. Due to different mesh topology, for simplicity we use
hand joints as pseudo ground-truth, and perform Procrustes analysis of
each hand independently, ignoring the body. Panteleris et al. [266] achieve
a mean 3D joint error of 26.5 mm, while SMPL-X has 19.8 mm.

Finally, we fit SMPL-X with SMPLify-X to some in-the-wild datasets,
namely the LSP [160], LSP-extended [161] and MPII datasets [13]. Figure 2.5
shows some qualitative results for the LSP dataset [160]; see Sec. A.6 for
more examples and failure cases. The images show that a strong holistic
model like SMPL-X can effectively give natural and expressive reconstruction
from everyday images.
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2.5 conclusion

In this chapter, we present SMPL-X, a model that jointly captures the body
together with face and hands. We additionally present SMPLify-X, an
approach to fit SMPL-X to a single RGB image and 2D OpenPose joint de-
tections. We regularize fitting under ambiguities with a new powerful body
pose prior and a fast and accurate method for detecting and penalizing
penetrations. We present a wide range of qualitative results using images
in-the-wild, showing the expressivity of SMPL-X and the effectiveness of
SMPLify-X. We introduce a curated dataset with pseudo ground-truth to
perform quantitative evaluation, that shows the importance of more expres-
sive models. We believe that this is an important step towards expressive
capture of bodies, hands, and faces together from an RGB image.
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3
M O N O C U L A R E X P R E S S I V E B O D Y R E G R E S S I O N
T H R O U G H B O D Y- D R I V E N AT T E N T I O N

3.1 introduction

A long-term goal of computer vision is to understand humans and their
behavior in everyday scenarios using only images. Are they happy or sad?
How do they interact with each other and the physical world? What are their
intentions? To answer such difficult questions, we first need to quickly and
accurately reconstruct their 3D body, face and hands together from a single
RGB image. This is very challenging. As a result, the community has broken
the problem into pieces with much of the work focused on estimating either
the main body [103, 244, 304], the face [429] or the hands [81, 335, 396]
separately.

Only recent advances have made the problem tractable in its full com-
plexity. Early methods estimate 2D joints and features [43, 131] for the body,
face, and hands. However, this is not enough. It is the skin surface that
describes important aspects of humans, e.g. what their precise 3D shape
is, whether they are smiling, gesturing, or, holding something. For this
reason, strong statistical parametric models for expressive 3D humans were
introduced, namely, Adam [166], SMPL-X, described in Chapter 2, and
GHUM/GHUML [387]. Such models are attractive because they facilitate
reconstruction even from ambiguous data, working as a strong prior.

The first methods that estimate full expressive 3D humans from an RGB
image [270, 381, 387], using SMPL-X, Adam and GHUM/GHUML were
based on optimization, therefore they are slow, prone to local optima,
and rely on heuristics for initialization. These issues significantly limit the
applicability of these methods. In contrast, recent body-only methods [169,
187] directly regress 3D SMPL bodies quickly and relatively reliably from
an RGB image.

Here we present a fast and accurate model that reconstructs full expressive
3D humans, by estimating SMPL-X parameters directly from an RGB image.
This is a hard problem and we show that it is not easily solved by extend-
ing SMPL neural-network regressors to SMPL-X for several reasons. First,
SMPL-X is a much higher dimensional model than SMPL. Second, there
exists no large in-the-wild dataset with SMPL-X annotations for training.
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Figure 3.1: Left: Full-body RGB images of people contain many more pixels on
the body than on the face or hands. Middle: Images are typically downsized (e.g.
to 256× 256 px) for use in neural networks. This resolution is fine for the body
but the hands and face suffer from low resolution. Our model, see Fig. 3.2, uses
body-driven attention to restore the lost information for hands and faces from the
original image, feeding it to dedicated refinement modules. Right: These modules
give more expressive hands and faces, by exploiting part-specific knowledge learned
from higher quality hand-only [427] and face-only [173] datasets; green meshes
show example part-specific training data.

Third, the face and hands are often blurry and occluded in images. At
any given image resolution, they also occupy many fewer pixels than the
body, making them low resolution. Fourth, for technical reasons, full-body
images are typically downscaled for input to neural networks [191], e.g. to
256× 256 pixels. As shown in Fig. 3.1, this results in even lower resolution
for the hands and face, making inference difficult.

Our model and training method, shown in Fig. 3.2, tackles all these
challenges. We account for data scarcity by introducing a new dataset with
paired in-the-wild images and SMPL-X annotations. To this end, we employ
several standard in-the-wild body datasets [13, 160, 161, 215] and fit SMPL-X
to them with SMPLify-X, see Sec. 2.3.2. We semi-automatically curate these
fits to keep only the good ones as pseudo ground-truth. We then train
a model that regresses SMPL-X parameters from an RGB image, similar
to [169]. However, this only estimates rough hand and face configurations,
due to the problems described above. We observe that the main body is
estimated well, on par with [169, 187], providing good rough localization
for the face and hands. We use this for body-driven attention and focus the
network back on the original non-downscaled image for the face and hands.
We retrieve high-resolution information for these regions and feed this to
dedicated refinement modules. These modules act as an expressivity boost
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by distilling part-specific knowledge from high-quality hand-only [427] and
face-only [218] datasets. Finally, the independent components are fine-tuned
jointly end-to-end, so that the part networks can benefit from the full-body
initialization.

We call the final model ExPose (EXpressive POse and Shape rEgression).
ExPose is at least as accurate as existing optimization-based methods for
estimating expressive 3D humans, e.g. SMPLify-X from Sec. 2.3.2, while
running two orders of magnitude faster. Our data, model and code are
available for research at https://expose.is.tue.mpg.de.

3.2 related work

Human Modeling: Modeling and capturing the whole human body is a
challenging problem. To make it tractable, the community has studied the
body, face and hands separately, in a divide-and-conquer fashion. For the
human face, the seminal work of Blanz and Vetter [33] introduces the first
3D morphable model. Since then, numerous works (see [79]) propose more
powerful face models and methods to infer their parameters. For human
hands the number of models is limited, with Khamis et al. [176] learning
a model of hand shape variation from depth images, while Romero et
al. [293] learn a parametric hand model with both a rich shape and pose
space from 3D hand scans. For the human body, the introduction of the
CAESAR dataset [290] enables the creation of models that disentangle shape
and pose, such as SCAPE [15] and SMPL [222], to name a few. However,
these models have a neutral face and the hands are non-articulated. In
contrast, Adam [166], SMPL-X, see Sec. 2.3.1, and GHUM [387] are the first
models that represent the body, face, and hands jointly. Adam lacks the
pose-dependent blendshapes of SMPL and the released version does not
include a face model.

Human Pose Estimation: Often pose estimation is treated as the es-
timation of 2D or 3D keypoints, corresponding to anatomical joints or
landmarks [39, 43, 319]. In contrast, recent advances use richer representa-
tions of the 3D body surface in the form of parametric [34, 169, 262, 272] or
non-parametric [188, 299, 359] models.

To estimate bodies from images, many methods break the problem down
into stages. First, they estimate some intermediate representation such as
2D joints [34, 113, 114, 140, 169, 237, 272, 318, 352, 419], silhouettes [4, 140,
272], part labels [262, 298] or dense correspondences [116, 294]. Then, they
reconstruct the body pose out of this proxy information, by either using it
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in the data term of an optimized energy function [34, 140, 403] or “lifting”
it using a trained regressor [169, 237, 262, 272, 352]. Due to ambiguities
in lifting 2D to 3D, such methods use various priors for regularization,
such as known limb lengths [198], a pose prior for joint angle limits [5],
or a statistical body model [34, 140, 262, 272] like SMPL [222]. The above
2D proxy representations have the advantage that annotation for them is
readily available. Their disadvantage is that the eventual regressor does not
get to exploit the original image pixels and errors made by the proxy task
cannot be overcome.

Other methods predict 3D pose directly from RGB pixels. Intuitively, they
have to learn a harder mapping, but they avoid information bottlenecks
and additional sources of error. Most methods infer 3D body joints [205,
271, 331, 332, 340], parametric methods estimate model parameters [169,
170, 187], while non-parametric methods estimate 3D meshes [188], depth
maps [98, 323] voxels [359, 421] or distance fields [299, 300]. Datasets of
paired indoor images and MoCap data [150, 317] allow supervised training,
but may not generalize to in-the-wild data. To account for this, Rogez and
Schmid [292] augment these datasets by overlaying synthetic 3D humans,
while Kanazawa et al. [169] include in-the-wild datasets [13, 160, 161, 215]
and employ a re-projection loss on their 2D joint annotations for weak
supervision.

Similar observations can be made in the human hand and face literature.
For hands, there has been a lot of work on RGB-D data [396], and more
recent interest in monocular RGB [20, 36, 120, 126, 151, 194, 247, 339, 426].
Some of the non-parametric methods estimate 3D joints [151, 247, 339, 426],
while others estimate 3D meshes [104, 193]. Parametric models [20, 36, 126,
194, 415] estimate configurations of statistical models like MANO [293] or a
graph morphable model [194]. For faces, 3D reconstruction and tracking has
a long history. We refer the reader to a recent comprehensive survey [429].

Attention for Human Pose Estimation: In the context of human pose es-
timation, attention is often used to improve prediction accuracy. Successful
architectures for 2D pose estimation, like Convolutional Pose Machines [371]
and Stacked Hourglass [255] include a series of processing stages, where
the intermediate pose predictions in the form of heatmaps are used as input
to the following stages. This informs the network of early predictions and
guides its attention to relevant image pixels. Chu et al. [58] build explicit at-
tention maps, at a global and part-specific level, driving the model to focus
on regions of interest. Instead of predicting attention maps, our approach
uses the initial body mesh prediction to define the areas of attention for

31



hands- and face-specific processing networks. A similar practice is used
by OpenPose [43], where arm keypoints are used to estimate hand bound-
ing boxes, in a heuristic manner. Additionally, for HoloPose [115], body
keypoints are used to pool part-specific features from the image.

A critical difference of ExPose is that, instead of simply pooling already
computed features, we also process the region of interest at higher res-
olution, to capture more subtle face and hand details. In related work,
Chandran et al. [46] use a low resolution proxy image to detect facial
landmarks and extract high resolution crops that are used to refine facial
landmark predictions.

Expressive Human Estimation: Since expressive parametric models of
the human body have only recently been introduced [166, 270, 293, 387],
there are only a few methods to reconstruct their parameters. Joo et al. [166]
present an early approach, but rely on an extended multi-view setup. More
recently, Xiang et al. [381], SMPLify-X, described in Sec. 2.3.2, and Xu et
al. [387] use a single image to recover Adam, SMPL-X, and GHUM pa-
rameters respectively, using optimization-based approaches. This type of
inference can be slow and may fail in the presence of noisy feature detec-
tions. In contrast, we present the first regression approach for expressive
monocular capture and show that it is both more accurate and significantly
faster than prior work.

3.3 method

3.3.1 3D Body Representation

To represent the human body, we use SMPL-X, described in Sec. 2.3.1. We
denote posed joints with J(θ, β) ∈ RJ×3. The final set of predicted SMPL-X
parameters is the vector Θ = {β, θ, ψ} ∈ R338, where β ∈ R10, ψ ∈ R10

and θ ∈ RJ×D, with J = 53 and D = 6, as we choose to represent the pose
parameters θ using the representation of Zhou et al. [422]. Note that we do
not predict pose variables for the eyes.

3.3.2 Body-driven Attention

Instead of attempting to regress body, hand, and face parameters from a
low-resolution image crop we design an attentive architecture that uses
the structure of the body and the full resolution of the image I. Given a
bounding box of the body, we extract an image Ib, using an affine trans-
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formation Tb ∈ R2×3, from the high resolution image I. The body crop Ib
is fed to a neural network g, similar to HMR [169], to produce a first set
of SMPL-X parameters Θb and weak-perspective camera scale sb ∈ R and
translation tb ∈ R2. After posing the model and recovering the posed joints
J, we project them on the image:

j = s(Πo(J) + t) (3.1)

where Πo is the orthographic projection operator. We then compute a
bounding box for each hand and the face, from the corresponding subsets
of projected 2D joints, jh and j f . Let (xmin, ymin) and (xmax, ymax) be the top
left and bottom right points for a part, computed from the respective joints.
The bounding box center is equal to c =

(
xmin+xmax

2 , ymin+ymax
2

)
, and its size

is bs = 2 ·max(xmax − xmin, ymax − ymin). Using these boxes, we compute
affine transformations Th, T f ∈ R2×3 to extract higher resolution hand and
faces images using spatial transformers (ST) [154]:

Ih = ST (I;Th) , I f = ST
(

I;T f

)
. (3.2)

The hand Ih and face I f images are fed to a hand network h and a face
network f , to refine the respective parameter predictions. Hand parameters
θh include the orientation of the wrist θwrist and finger articulation θfingers,
while face parameters contain the expression coefficients ψ f and facial pose
θ f , which is just the rotation of the jaw. We refine the parameters of the
body network by predicting offsets for each of the parameters and condition
the part specific networks on the corresponding body parameters:[

∆θwrist, ∆θfingers
]
= h

(
Ih; θwrist

b , θ
fingers
b

)
,

[∆θf, ∆ψ] = f
(

I f ; θf
b, ψb

) (3.3)

where θwrist
b , θ

fingers
b , θf

b, ψb are the wrist pose, finger pose, facial pose and
expression predicted by g(·). The hand and head sub-networks also produce
a set of weak-perspective camera parameters {sh, th}, {sf, tf} that align the
predicted 3D meshes to their respective images Ih and I f . The final hand
and face predictions are then equal to:

θh =
[
θwrist, θfingers

]
=
[
θwrist

b , θ
fingers
b

]
+
[
∆θwrist, ∆θfingers

]
(3.4)[

ψ, θ f

]
=
[
ψb, θ

f
b

]
+
[
∆ψ, ∆θ f

]
. (3.5)
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With this approach, we can utilize the full resolution of the original image I
to overcome the small pixel resolution of the hands and face in the body
image Ib. Another significant advantage is that we are able to leverage
hand- and face-only data to supplement the training of the hand and face
sub-networks. A detailed visualization of the prediction process can be seen
in Fig. 3.2. The loss function used to train the model is a combination of
terms for the body, the hands and the face. We train the body network using
a combination of a 2D re-projection loss, 3D joint errors, and a loss on the
parameters Θ, when available. All variables with a hat denote ground-truth
quantities.

L = Lbody + Lhand + Lface + Lh + L f (3.6)

Lbody = Lreproj + L3D Joints + LSMPL-X (3.7)

Lreproj =
J

∑
n=1

υn
∥∥ĵn − jn

∥∥
1 . (3.8)

L3D Joints =
J

∑
n=1

∥∥Ĵn − Jn
∥∥

1 (3.9)

LSMPL-X =
∥∥{β̂, θ̂, ψ̂

}
− {β, θ, ψ}

∥∥2
2 (3.10)

We use υn as a binary variable denoting visibility of each of the J joints.
The re-projection losses Lh and L f are applied in the hand and face image
coordinate space, using the affine transformations Th, Tf . The reason for
this extra penalty is that alignment errors in the 2D projection of the fingers
or the facial landmarks have a much smaller magnitude compared to those
of the main body joints when computed on the body image Ib

Lh = ∑
n∈Hand

υn

∥∥∥ThT
−1
b
(
ĵn − jn

)∥∥∥
1

,

L f = ∑
n∈Face

υn

∥∥∥T fT
−1
b
(
ĵn − jn

)∥∥∥
1

.
(3.11)

For the hand and head only data we also employ a re-projection loss,
using only the subset of joints of each part, and parameter losses:

Lhand = Lreproj +
∥∥{β̂h, θ̂h

}
− {βh, θh}

∥∥2
2 (3.12)

Lface = Lreproj +
∥∥∥{β̂ f , θ̂ f , ψ̂ f

}
−
{

β f , θ f , ψ f

}∥∥∥2

2
. (3.13)
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Figure 3.2: An image of the body is extracted using a bounding box from the full resolution image and fed to a neural network
g(·), that predicts body pose θb, hand pose θh, facial pose θf, shape β, expression ψ, camera scale s and translation t. Face
and hand images are extracted from the original resolution image using bilinear interpolation. These are fed to part specific
sub-networks f (·) and h(·) respectively to produce the final estimates for the face and hand parameters. During training the
part specific networks can also receive hand and face only data for extra supervision.3

5



Figure 3.3: Left: Example curated expressive fit. Middle: Hands sampled from
the FreiHAND dataset [427]. Right: Head training data produced by running
RingNet [302] on FFHQ [173] and then fitting to 2D landmarks predicted by [39].

3.3.3 Implementation Details

Training Datasets: We curate a dataset of SMPL-X fits by running vanilla
SMPLify-X [270] on the LSP [160], LSP extended [161] and MPII [13]
datasets. We then ask human annotators whether the resulting body mesh
is plausible and agrees with the image and collect 32, 617 pairs of im-
ages and SMPL-X parameters. fits of SPIN [187] from SMPL to SMPL-X,
see Sec. B.2. Moreover, we use H3.6M [150] for additional 3D supervi-
sion for the body. For the hand sub-network we employ the hand-only
data of FreiHAND [427]. For the face sub-network we create a pseudo
ground-truth face dataset by running RingNet [302] on FFHQ [173]. The
regressed FLAME [207] parameters are refined by fitting to facial land-
marks [39] for better alignment with the image and more detailed expres-
sions. Figure 3.3 shows samples from all training datasets.

Architecture: For the body network we extract features ϕ ∈ R2048 with
HRNet [330]. For the face and hand sub-networks we use a ResNet18 [130]
to limit the computational cost. For all networks, rather than directly re-
gressing the parameters Θ from ϕ, we follow the iterative process of [169].
We start from an initial estimate Θ0 = Θ̄, where Θ̄ represents the mean,
which is concatenated to the features ϕ and fed to an MLP that predicts a
residual ∆Θ1 = MLP ([ϕ, Θ0]). The new parameter value is now equal to
Θ1 = Θ0 + ∆Θ1 and the whole process is repeated. As in [169], we iterate
for t = 3 times. The entire pipeline is implemented in PyTorch [268]. For
architecture details see Sec. B.1.

Data Pre-processing and Augmentation: We follow the pre-processing
and augmentation protocol of [187] for all networks. To make the model
robust to partially visible bodies we adopt the cropping augmentation of
Joo et al. [163]. In addition, we augment the hand- and face-only images
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with random translations, as well as down-sampling by a random factor
and then up-sampling back to the original resolution. The former simulates
a misaligned body prediction, while the latter bridges the gap in image
quality between the full-body and part-specific data. Hand and especially
face images usually have a much higher resolution and quality compared
to a crop extracted from a full-body image. To simulate body conditioning
for the hand- and head-only data we add random noise to the initial
point of the iterative regressor. For the hands we replace the default finger
pose with a random rotation rfinger sampled from the PCA pose space
of MANO. For the head we replace the default jaw rotation θ̄ f with a
random rotation of rf ∼ U (0, 45) degrees around the x-axis. For both
parts, we replace their global rotation with a random rotation with angle
rglobal ∼ U (rmin, rmax) and the same axis of rotation as the corresponding
ground-truth. We set (rmin, rmax)hand to (−90, 90) and (rmin, rmax)face to
(−45, 45) degrees. The default mean shape is replaced with a random
vector β ∼ N (0, I) , I ∈ R10×10 and the default neutral expression with a
random expression ψ ∼ N (0, I). Some visualizations of the different types
of data augmentation can be found in Sec. B.2.

Training: We first pre-train the body, hand and face networks separately,
using ADAM [180], on the respective part-only datasets. We then fine-tune
all networks jointly on the union of all training data, following Sec. 3.3.2,
letting the network make even better use of the conditioning, see Sec. 3.4
and Tab. 3.2. Please note that for this fine-tuning, our new dataset of curated
SMPL-X fits plays an instrumental role. Our exact hyper-parameters are
included in the released code.

3.4 experiments

3.4.1 Evaluation Datasets

We evaluate on several datasets:
Expressive Hands and Faces (EHF): We use this dataset, described in

Sec. 2.4.1, to evaluate our whole-body predictions.
3D Poses in the Wild (3DPW) [235] consists of in-the-wild RGB video

sequences annotated with 3D SMPL poses. It contains several actors per-
forming various motions, in both indoor and outdoor environments. It is
captured using a single RGB camera and IMUs mounted on the subjects.
We use it to evaluate our predictions for the main body area, excluding the
head and hands.
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FreiHAND [427] is a multi-view RGB hand dataset that contains 3D
MANO hand pose and shape annotations. The ground-truth for the test
data is held-out and evaluation is performed by submitting the estimated
hand meshes to an online server. We use it to evaluate our hand sub-network
predictions.

Stirling/ESRC 3D [90] consists of facial RGB images with ground-truth
3D face scans. It contains 2000 neutral face images, namely 656 high-quality
(HQ) ones and 1344 low-quality (LQ) ones. We use it to evaluate our face
sub-network following the protocol of [90].

3.4.2 Evaluation Metrics

We employ several common metrics below. We report errors with and
without rigid alignment to the ground-truth. A “PA” prefix denotes that
the metric measures error after solving for rotation, scale, and translation
using Procrustes Alignment.

To compare with ground-truth 3D skeletons, we use the Mean Per-Joint
Position Error (MPJPE). For this, we first compute the 14 LSP-common
joints, by applying a linear joint regressor on the ground-truth and esti-
mated meshes, and then compute their mean Euclidean distance.

For comparing to ground-truth meshes, we use the Vertex-to-Vertex
(V2V) error, i.e. the mean distance between the ground-truth and predicted
mesh vertices. This is appropriate when the predicted and ground-truth
meshes have the same topology, e.g. SMPL-X for our overall network,
MANO for our hand and FLAME for our face sub-network. For a fair
comparison to methods that predict SMPL instead of SMPL-X, like [169,
187], we also report V2V only on the main body, i.e. without the hands and
the head, as SMPL and SMPL-X share common topology for this subset of
vertices.

For comparing to approaches that output meshes with different topology,
like MTC [381] that uses the Adam model and not SMPL-X, we cannot use
V2V. Instead, we compute the (mesh-to-mesh) point-to-surface (P2S) dis-
tance from the ground-truth mesh, as a common reference, to the estimated
mesh.

For evaluation on datasets that include ground-truth scans, we compute
a scan-to-mesh version of the above point-to-surface distance, namely from
the ground-truth scan points to the estimated mesh surface. We use this
for the face dataset of [90] to evaluate the head estimation of our face
sub-network.
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Method PA-MPJPE (mm) MPJPE (mm) PA-Body V2V (mm)

HMR [169] 81.3 130 65.2

SPIN [187] 59.2 96.9 53.0

ExPose 60.7 93.4 55.6

Table 3.1: Comparison on the 3DPW dataset [235] with two state-of-the-art ap-
proaches for SMPL regression, HMR [169] and SPIN [187]. The numbers are per-
joint and per-vertex errors (in mm) for the body part of SMPL. ExPose outperforms
HMR and is on par with SPIN, while also being able to capture details for the hands
and the face.

Finally, for the FreiHAND dataset [427] we report all metrics returned
by their evaluation server. Apart from PA-MPJPE and PA-V2V described
above, we also report the F-score [181].

3.4.3 Quantitative and Qualitative Experiments

First, we evaluate our approach on the 3DPW dataset that includes SMPL
ground-truth meshes. Although this does not include ground-truth hands
and faces, it is ideal for comparing main-body reconstruction against state-
of-the-art approaches, namely HMR [169] and SPIN [187]. Table 3.1 presents
the results, and shows that ExPose outperforms HMR and is on par with the
more recent SPIN. This confirms that ExPose provides a solid foundation
upon which to build detailed reconstruction for the hands and face.

We then evaluate on the EHF dataset that includes high-quality SMPL-X
ground truth. This allows evaluation for the more challenging task of
holistic body reconstruction, including expressive hands and face. Table 3.2
presents an ablation study for our main components. In the first row, we
see that the initial body network, which uses a low-resolution body-crop
image as input, performs well for body reconstruction but makes mistakes
with the hands. The next two rows add body-driven attention; they use the
body network prediction to locate the hands and face, and then redirect
the attention in the original image, crop higher-resolution image patches
for them, and feed them to the respective hand and face sub-networks to
refine their predictions, while initializing/conditioning their predictions.
This conditioning can take place in two ways. The second row shows a
naive combination using independently trained sub-networks. This fails
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Networks
Attention on End-to-end PA-V2V (mm)

high-res. crops fine-tuning All Body L/R hand Face

Body only ✗ ✗ 57.3 55.9 14.3 / 14.8 5.8

Body & Hand & Face ✓ ✗ 56.4 52.6 14.1 / 13.9 6.0

Body & Hand & Face ✓ ✓ 54.5 52.6 13.1 / 12.5 5.8

Table 3.2: Ablation study on the EHF dataset. The results are vertex-to-vertex errors
expressed in mm for the different parts (i.e., all vertices, body vertices, hand vertices
and head vertices). We report results for the initial body network applied on the low
resolution (first row), for a version that uses the body-driven attention to estimate
hands and faces (second row), and for the final regressor that jointly fine-tunes the
body, hands and face sub-networks.

to significantly improve the results, since there is a domain gap between
images of face- or hand-only [90, 427] training datasets and hand/head
image crops from full-body [13, 160, 161] training datasets; the former
tend to be of higher resolution and better image quality. Please note that
this is similar to [43], but extended for 3D mesh regression. In the third
row, the entire pipeline is fine-tuned end-to-end. This results in a boost in
quantitative performance, improving mainly hand articulation (best overall
performance).

Next, we compare to state-of-the-art approaches again on the EHF dataset.
First, we compare against the most relevant baseline, SMPLify-X, which
estimates SMPL-X using an optimization approach. Second, we compare
against Monocular Total Capture (MTC) [381], which estimates expressive
3D humans using the Adam model. Note that we use their publicly avail-
able implementation, which does not include an expressive face model.
Third, we compare against HMR [169] and SPIN [187], which estimate
SMPL bodies, therefore we perform body-only evaluation, excluding the
hand and head regions. We summarize all evaluations in Tab. 3.3. We
find that ExPose outperforms the other baselines, both in terms of full
expressive human reconstruction and body-only reconstruction. SMPLify-X
performs a bit better locally, i.e. for the hands and face, but the full body
pose can be inaccurate, mainly due to errors in OpenPose detections. In
contrast, our regression-based approach is a bit less accurate locally for
the hands and face, but overall it is more robust than SMPLify-X. The two
approaches could be combined, with ExPose replacing the heuristic initial-
ization of SMPLify-X with its more robust estimation; we speculate that this
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Method Time (s)
PA-V2V (mm) PA-MPJPE (mm) PA-P2S (mm)

All Body L/R hand Face Body Joints L/R hand Mean Median

SMPLify-X′ 40-60 52.9 56.37 11.4/12.6 5.3 73.5 11.9/13.2 28.9 18.1

HMR [169] 0.06 N/A 67.2 N/A N/A 82.0 N/A 34.5 21.5

SPIN [187] 0.01 N/A 60.6 N/A N/A 102.9 N/A 40.8 28.7

SMPLify-X 40-60 65.3 75.4 11.6/12.9 6.3 87.6 12.2/13.5 36.8 23.0

MTC [381] 20 67.2 N/A N/A N/A 107.8 16.3/17.0 41.3 29.0

ExPose (Ours) 0.16 54.5 52.6 13.1/12.5 5.8 62.8 13.5/12.7 28.9 18.0

Table 3.3: Comparison with the state-of-the-art approaches on the EHF dataset.
The metrics are defined in Sec. 3.4.2. For SMPLify-X, the results of the first row
are generated using ground truth camera parameters, so they are not directly
comparable with the other approaches. MTC running time includes calculation of
part orientation fields and Adam fitting. The regression-based methods require
extra processing to obtain the input human bounding box. For example, if one uses
Mask-RCNN [128] with a ResNet50-FPN [214] from Detectron2 [379] the complete
running time of these methods increases by 43 milliseconds. All timings were done
with an Intel Xeon W-2123 3.60GHz CPU and a Quadro P5000 GPU and are for
estimating one person.

would improve both the accuracy and the convergence speed of SMPLify-X.
Furthermore, ExPose outperforms MTC across all metrics. Finally, it is
approximately two orders of magnitude faster than both SMPLify-X and
MTC, which are both optimization-based approaches.

We also evaluate each sub-network on the corresponding part-only
datasets. For the hands we evaluate on the FreiHAND dataset [427], and
for faces on the Stirling/ESRC 3D dataset [90]. Table 3.4 summarizes all
evaluations. The part sub-networks of ExPose match or come close to the
performance of state-of-the-art methods. We expect that using a deeper
backbone, e.g. a ResNet50, would be beneficial, but at a higher computa-
tional cost.

The quantitative findings of Tab. 3.2 are reflected in qualitative results.
In Fig. 3.4, we compare our final results with the initial baseline that
regresses all SMPL-X parameters directly from a low-resolution image
without any attention (first row in Tab. 3.2). We observe that our body-
attention mechanism gives a clear improvement for the hand and the face
area. Figure 3.5 contains ExPose reconstructions, seen from multiple views,
where we again see the higher level of detail offered by our method. For
more qualitative results, see Sec. B.5.
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FreiHAND PA-MPJPE (mm) PA-V2V (mm) F@5mm F@15mm

MANO CNN [427] 11.0 10.9 0.516 0.934

ExPose hand sub-network h 12.2 11.8 0.484 0.918

Stirling3D Dataset LQ/HQ Mean (mm) Median (mm) Standard

Deviation (mm)

RingNet [302] 2.08/2.02 1.63/1.58 1.79/1.69

ExPose face sub-network f 2.27/2.42 1.76/1.91 1.97/2.03

Table 3.4: We evaluate our final hand sub-network on the FreiHAND dataset [427]
and the face sub-network on the test dataset of Feng et al. [90]. The final part
networks are on par with existing methods, despite using a shallower backbone, i.e.
a ResNet-18 vs a Resnet-50.

3.5 conclusion

In this chapter, we present a regression approach for holistic expressive
body reconstruction. Considering the different scale of the individual parts
and the limited training data, we identify that the naive approach of re-
gressing a holistic reconstruction from a low-resolution body image misses
fine details in the hands and face. To improve our regression approach, we
investigate a body-driven attention scheme. This results in consistently bet-
ter reconstructions. Although the pure optimization-based approach [270]
recovers the finer details, it is too slow to be practical. ExPose provides com-
petitive results, while being more than two orders of magnitude faster than
SMPLify-X. Eventually, the two approaches could be combined effectively,
as in [187]. Considering the level of accuracy and speed of our approach,
we believe it should be a valuable tool and enable many applications that
require expressive human pose information. Future work should extend
the inference to multiple humans [156, 403, 404], video sequences [170,
182] and improve the alignment of the body to the image pixels [410]. The
rich body representation will also accelerate research on human-scene [124,
305] interaction, human-object [210, 337] interaction, and person-person
interaction [91, 204]. In Chapter 5 we describe an approach to improve 3D
body shape estimation using partial information, namely anthropometric
measurements and linguistic attributes.
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Figure 3.4: Left: The input image. Middle: Naive regression from a single body image
fails to capture detailed finger articulation and facial expressions. Right: ExPose
is able to recover these details, thanks to its attention mechanism, and produces
results of similar quality as SMPLify-X, while being 200× times faster, see Tab. 3.3.
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Figure 3.5: Input image, ExPose predictions overlayed on the image and renderings
from different viewpoints. ExPose is able to recover detailed hands and faces thanks
to its attention mechanism, and produces results of similar quality as SMPLify-X,
while being 200× times faster.
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4
C O L L A B O R AT I V E R E G R E S S I O N O F E X P R E S S I V E B O D I E S
U S I N G M O D E R AT I O N

a b c d e f g h

Figure 4.1: PIXIE estimates expressive 3D humans (b, e, f) from an RGB image (a).
For this, it employs experts for the body, face (c, d), and hands (g, h), which are
combined (b, e, f) by a novel moderator, according to their confidence (see Fig. 4.2).
PIXIE estimates appropriate body shapes (b) by implicitly learning to reason about
gender from an image. Finally, PIXIE estimates fine facial details, i.e. 3D surface
displacements (c) and albedo (d), similar to state-of-the-art face-only methods.

4.1 introduction

To model human behavior, we need to capture how people look, how they
feel, and how they interact with each other. To facilitate this, our goal is to
reconstruct whole-body 3D shape and pose, facial expressions, and hand
gestures from an RGB image. This is challenging, as humans vary in shape
and appearance, they are highly articulated, they wear complex clothing,
they are often occluded, and their face and hands are small, yet highly
deformable. For these reasons, the community studies the body [34, 169,
187], hands [36, 105, 126, 415] and face [79] mostly separately.

As discussed in the last chapter, recent whole-body statistical models [166,
270, 387] enable approaches to address the problem holistically, by jointly
capturing the body, face, and hands. ExPose, see Chapter 3, reconstructs
SMPL-X, see Sec. 2.3.1, meshes from an RGB image, using “expert” sub-
networks for the body, face, and hands. However, ExPose’s part experts
operate completely independently, as they only “see" their respective part
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image. Thus, they do not exploit the correlations between parts to overcome
challenges like occlusion or motion blur.

Face-only methods [87, 393] are well studied and recover accurate fa-
cial shape, albedo, and geometric details, which are important to capture
emotions. However, they need a tight crop around the face and struggle
with extreme viewing angles and faces that are small, low-resolution or
occluded. While whole-body methods [56, 166, 270, 295, 387] handle these
challenges well, they estimate average-looking face shapes, without face
albedo and fine geometric details.

To get the best of all worlds, we introduce PIXIE (“Pixels to Individuals:
eXpressive Image-based Estimation”). PIXIE estimates expressive whole-
bodied 3D humans from an RGB image more realistically than existing
work. To do so, it pushes the state of the art in three ways.

First, PIXIE learns not only experts for the body, face, and hands, but
also a novel moderator that estimates their confidence in each sub-image,
and fuses their features weighted by this. The learned fusion helps improve
whole-body shape, using SMPL-X’s shared shape space across all body
parts. Moreover, it helps to robustly estimate head and hand pose when
these are ambiguous (e.g. occlusions or blur) by using full-body context;
see Fig. 4.2 for examples.

Second, PIXIE significantly improves “gendered” body shape realism.
While human shape is highly correlated with gender, existing work ignores
this and estimates inaccurate body shapes – often with the wrong gender
or with a gender-neutral shape. An exception is SMPLify-X, but it uses an
offline gender classifier and fits a gender-specific SMPL-X model. Instead,
using a single unisex SMPL-X model enables end-to-end training of neural
nets. PIXIE adopts this approach and learns to implicitly reason about
shape. For this, we define male, female, and non-binary body-shape priors
within the SMPL-X shape space. At training time, given automatically
created gender labels for input images, we train PIXIE to output plausible
shape parameters for the specified gender. At inference time, PIXIE needs
no gender labels, is applicable to any in-the-wild image, and supports non-
binary genders. Note that this approach is general and is relevant for the
broader community (face, body, whole-body). Body shape is also correlated
with face shape [100, 117, 185]. Thus, we do the same “gendered” training
for our face expert; this allows PIXIE to use face information to inform
body shape. This training and network architecture significantly improves
body shape both qualitatively and quantitatively.
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Figure 4.2: PIXIE infers the confidence of its body, face and hand experts, and fuses
their features accordingly. Challenges, like occlusions, are resolved with full-body
context. (L) Input image. (R) Color-coded part-expert confidence.

Third, PIXIE’s face expert additionally infers facial albedo and dense 3D
facial-surface displacements. For this, we draw inspiration from Feng et
al. [87], and go beyond them in three ways: (1) We use a whole-body shape
space, rather than a face-only space, to capture correlations between the
body and face shape. (2) We use photometric and identity losses on faces to
inform whole-body shape. (3) We use the inferred geometric details only
when the face expert is confident, as judged by the moderator. As shown in
Fig. 4.1, this results in whole-body 3D humans with detailed faces that can
be fully animated.

To summarize, here we make three key contributions: (1) We train a
novel moderator, that infers the confidence of body-part experts and fuses
their features weighted by this. This improves shape and pose inference
under ambiguities. (2) We train the network to implicitly reason about
gender, i.e. without gender labels at test time, with a novel “gendered”
3D shape loss that encourages likely body shapes. (3) We extend our face
expert with branches that estimate facial albedo and 3D facial-surface
displacements, enabling whole-body animation with a realistic face. PIXIE
is a step towards automatic, accurate, and realistic 3D avatar creation from
a single RGB image. Models and code are available for research purposes:
https://pixie.is.tue.mpg.de.

4.2 related work

Body reconstruction: For years, the community focused on the prediction
of 2D or 3D landmarks for the body [43], face [39] and hands [319, 367],
with a recent shift towards estimating 3D model parameters [34, 163, 169,
183, 262, 272, 333] or 3D surfaces [188, 213, 299, 300, 359]. One line of work
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simplifies the problem by using proxy representations like 2D joints [34, 113,
114, 140, 237, 272, 318, 352, 419], silhouettes [4, 140, 272], part labels [262,
298] or dense correspondences [294, 406]. These are then “lifted” to 3D,
either as part of an energy term [34, 140, 403] or using a regressor [237,
262, 272, 352]. To overcome ambiguities, they use priors such as known
limb lengths [198], joint angle limits [5], or a statistical body model [34,
140, 262, 270, 272] like SMPL [222] or SMPL-X, see Sec. 2.3.1. While these
approaches benefit from 2D annotations, they cannot overcome errors in
the proxy features and do not fully exploit image context. The alternative is
to directly regress 3D skeletons [205, 271, 331, 332, 340], statistical model
parameters [56, 91, 163, 169, 170, 183, 187, 333], 3D meshes [188, 213], depth
maps [98, 323], 3D voxels [359, 421] or distance fields [299, 300] from the
image pixels.

Face reconstruction: Most modern monocular 3D face estimation meth-
ods predict the parameters of a pre-computed statistical face model [79].
Similar to the body literature, this problem is tackled with both optimiza-
tion [6, 27, 33, 346] and regression methods [89, 153, 302, 343]. Many
learning-based approaches follow an analysis-by-synthesis strategy [73, 343,
344], which jointly estimates geometry, albedo, and lighting, to render a
synthetic image [223, 284] that is compared with the input. Recent work [73,
87, 108] further employs face-recognition terms [42] during training to
reconstruct more accurate facial geometry. Even geometric details, such as
wrinkles, can be learned from large collections of in-the-wild images [87,
353]. We refer to Egger et al. [79] for a comprehensive overview. The major
downsides of face-specific approaches are their need for tightly cropped
face images and their inability to handle non-frontal images. The latter is
mainly due to the lack of supervision; 2D landmarks may be missing or the
face might not even be detected at all, in which case the photometric term
is not applicable. By integrating face and body regression, PIXIE regresses
head pose and shape robustly in situations where face-only methods fail
and lets the face contribute to whole-body shape estimation.

Hand reconstruction: While hand pose estimation is most often per-
formed from RGB-D data, there has been a recent shift towards the use of
monocular RGB images [20, 36, 120, 126, 151, 194, 247, 339, 426]. Similar to
the body, we split these into methods that predict 3D joints [151, 247, 339,
426], parameters of a statistical hand model [20, 36, 126, 194, 415], such as
MANO [293], or a 3D surface [105, 193].

Whole-body reconstruction: Recent methods approach the problem of
human reconstruction holistically. Some of these estimate 3D landmarks
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for the body, face and hands [158, 372], but not their 3D surface. This is
addressed by whole-body statistical models [166, 270, 387], that jointly
capture the 3D surface for the body, face and hands.

SMPLify-X, described in Sec. 2.3.2, fits SMPL-X to 2D body, hand, and
face keypoints [43] estimated in an image. Xiang et al. [381] estimate both
2D keypoints and a part orientation field and fit Adam [166] to these. Xu et
al. [387] fit GHUM [387] to detected body-part image regions. While these
methods work, they are based on optimization, consequently they are slow
and do not scale up to large datasets.

Deep-learning methods [56, 295] tackle these limitations, and quickly
regress SMPL-X parameters from an image. ExPose, described in Chapter 3,
uses “expert” sub-networks for the body, face and hands; the body expert
estimates the body and rough part (hand/face) pose from the full-body
image, while part experts refine the rough part poses using only local image
information (hand/face crop). ExPose merges the output of its experts by
always trusting them. Instead, we evaluate the confidence of each expert for
each sub-image and fuse body/face and body/hand features weighted by
this. To account for different body-part sizes, we use ExPose’s body-driven
attention, and multiple data sources for both part-only and whole-body
supervision. FrankMocap [295] is similar to ExPose and adds an (optional)
optimization step to better align the estimated SMPL-X mesh with the
image. Zhou et al. [423] train a network to regress a body-and-hands
(SMPL+H) model [293] and the detailed MoFA [344] face model from an
RGB image, following a body-part attention mechanism and multi-source
training like ExPose. Note that SMPL+H and MoFA are disparate models,
which are (offline) manually cut-and-stitched together. Instead, we use the
whole-body SMPL-X model [270] that captures the shape of all body parts
together, thus no stitching is required. Zhou et al. fuse only hand-body
features in a “binary” fashion, while their face model is “disconnected”
from the body. Instead, we fuse both face-body and hand-body features in a
“fully analog” fusion, and thus our face expert can inform the whole-body
shape. Zhou et al. do not predict separate face camera parameters and need
PnP-RANSAC [93] and Procrustes to align their face to the image. Instead,
we infer face-specific camera parameters and need no extra alignment steps.
Zhou et al. use a complicated architecture, with several modules that are
trained separately, and is applicable only to whole bodies. Instead, we use
no intermediate tasks to avoid possible sources of error and train our model
end to end. Our full model is applicable to whole bodies, but the part
experts are also (separately) applicable to part-only data.
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4.3 method

Here we introduce PIXIE, a novel model for reconstructing SMPL-X humans
with a realistic face from a single RGB image. It uses a set of expert sub-
networks for body, face/head, and hand regression, and combines them
in a bigger network architecture with three main novelties: (1) We use a
novel moderator that assesses the confidence of part experts and fuses
their features weighted by this, for robust inference under ambiguities, like
strong occlusions. (2) We use a novel “gendered” shape loss, to improve
body shape realism by learning to implicitly reason about gender. (3) In
addition to the albedo predicted by our face expert, we employ the surface
details branch of Feng et al. [87].

4.3.1 Expressive 3D Body Model

We use the expressive SMPL-X [270] body model, described in Sec. 2.3.1,
to represent the human body. We follow the parameter vector definition
of Sec. 3.3.1, but with β ∈ R200 and ψ ∈ R50. We denote with M f the face
subset of the SMPL-X mesh M.

Camera: To reconstruct SMPL-X from images, we use the weak-perspective
camera model with scale s ∈ R and translation t ∈ R2. We denote the joints
J and model vertices M projected on the image with j ∈ RJ×2 and m ∈ RV×2.

4.3.2 PIXIE Architecture

PIXIE uses the architecture of Fig. 4.3, and is trained end to end. All model
components are described below.

Input images:: Given an image I with full resolution, we assume a
bounding box around the body. We use this to crop and downsample the
body to Ib to feed our network. However, this makes hands and faces too
low resolution. We thus use the attention mechanism of ExPose, described
in Sec. 3.3.2, to extract from I high-resolution crops for the face/head, I f ,
and hand, Ih.

Feature encoding: We feed {Ib, I f , Ih} to separate expert encoders {Eb, E f ,
Eh} to extract features {Fb, Ff , Fh}. We use ResNet-50 [130] for the face/head
and hand experts to generate Ff , Fh ∈ R2048. The body expert Eb uses
HRNet [330], followed by convolutional layers that aggregate the multi-
scale feature maps, to generate Fb ∈ R2048.
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Figure 4.3: Body, face/head and hand image crops {Ib, I f , Ih} are fed to the expert
encoders {Eb, E f , Eh} to produce part-specific features {Fb, Ff , Fh}. Our novel
moderators {M f , Mh} estimate the confidence of experts for these images, and
fuse face-body and hand-body features weighted by this, to create {Ffused

f , Ffused
h }.

These are fed to {Rfused
f ,Rfused

h } for robust regression. DECA’s [87] Rd estimates
fine geometric details. Icon from Freepik.

Feature fusion (moderator): We identify the expert pairs of {body, head}
and {body, hand} as complementary, and learn the novel moderators
{M f ,Mh} that build “fused” features {Ffused

f , Ffused
h } and feed them to

face/head and hand regressors {Rfused
f ,Rfused

h } (described below) for more
informed inference. A moderator is implemented as a multi-layer percep-
tron (MLP) and gets the body, Fb, and part, Fp (Ff or Fh), features and fuses
them with a weighted sum:

Ffused
p = wpFp

b + (1−wp)Fp, (4.1)

wp =
1

1 + exp
(
−τ ∗Mp(Fp

b , Fp)
) , (4.2)

whereMp (M f orMh) is the part moderator, wp (w f or wh) is the expert’s

confidence, and Fp
b (F f

b or Fh
b ) is the body feature Fb transformed by the

respective “extractor”, i.e. the linear layer Lp (Lh or L f ) between the body
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encoder Eb and part moderator Mp. Finally, τ is a learned temperature
weight, jointly trained with all network weights with the losses of Sec. 4.3.3,
with no τ-specific supervision.

Parameter regression: We use two main regressor types: (1) We use
the body, face/head, and hand {Rb,R f ,Rh} regressors, that get features
only from the respective expert encoder {Fb, Ff , Fh}. Rb infers the camera
cb = (sb, tb), and body rotation and pose θb up to (excluding) the head and
wrist. R f infers the camera c f = (s f , t f ), face albedo α f , and lighting l f . Rh

infers the camera ch = (sh, th). (2) We use the face/head, Rfused
f , and hand,

Rfused
h , regressors that get from moderators the “fused” features, Ffused

f and

Ffused
h . Rfused

h infers the wrist θwrist and finger pose θfingers. Rfused
f infers

expressions ψ, head rotation θhead, and jaw pose θjaw. Importantly, Rfused
f

also infers body shape β, letting our face expert contribute to whole-body
shape.

Detail capture: We use the fine geometric details branch Rd of Feng et
al. [87] that, given a face image I f , estimates dense 3D displacements on top
of FLAME’s [207] surface. We convert the displacements from FLAME’s
to SMPL-X’s UV map and apply them on PIXIE’s inferred head shape.
However, inferring geometric details from full-body images is not trivial;
the resolution of faces and image quality is much lower in these compared
to face-only images. We account for this with our moderator and use the
inferred displacements only when the face/head expert is confident.

4.3.3 Training Losses

To train PIXIE we use body, hand and face losses:

L = Lbody + Lhand + Lface + Lupdate, (4.3)

defined as follows; the hat (e.g. ĵ) denotes ground truth.
Body losses: Following [56], we use a combination of a 2D re-projection,

a 3D joint, and a SMPL-X parameter loss:

Lbody = Lbody
2D/3D-Joints + L

body
params, (4.4)

Lbody
2D/3D-Joints =

J

∑
n=1

∥∥ĵn − jn
∥∥

1 L+
J

∑
n=1

∥∥Ĵn − Jn
∥∥

1 , (4.5)

Lbody
params =

∥∥θ̂ − θ
∥∥2

2 +
∥∥β̂− β

∥∥2
2 . (4.6)
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Hand losses: We employ a similar set of losses to train the 3D hand pose
and shape estimation network:

Lhand = Lhand
2D/3D-Joints + L

hand
params, (4.7)

defined similarly to Lbody
2D/3D-Joints and Lbody

params of the body, but using the
hand joints and pose parameters θwrist and θfingers.

Face losses: We adopt standard losses used by the 3D face estimation
community [73, 87]:

Lface = Llmk + Llmk-closure + Lface
params + Lpho + Lid. (4.8)

The landmark loss penalizes the difference between detected [39] target 2D
landmarks p̂n and respective model landmarks (lying on M f ) projected on
the image plane, pn:

Llmk =
Nlmk

∑
n=1
∥ p̂n − pn∥1 . (4.9)

Following [87], we also compute a loss for the set UL of landmarks on the
upper, lower eyelid and upper, lower lip:

Llmk-closure = ∑
(i,j)∈UL

∥∥( p̂i − p̂j)− (pi − pj)
∥∥

1 . (4.10)

The face parameter loss Lface
params follows Lbody

params, but for face pose θface
only. This loss is only used for face crops from body data, when the target
face pose is available.

Given the predicted 3D face mesh M f as a subset of M, face albedo α f
and lighting l f , we render a synthetic image Ir for the input subject using
the differentiable renderer from Pytorch3D [284]. We then minimize the
difference between the input face image I f and the rendered image Ir:

Lpho =
∥∥∥M⊙ (I f − Ir)

∥∥∥
1,1

, (4.11)

where M is a binary face mask with value 1 in the face skin region, and 0
elsewhere, and ⊙ denotes the Hadamard product. The segmentation mask
prevents errors from non-face regions influencing the optimization, and we
use the segmentation network of Nirkin et al. [257] to extract M. The image
formation process is the same as in Feng et al. [87].
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Following [73, 106], we use a pre-trained face recognition network [42],
fid, to compute embeddings for the rendered image Ir and the input I f . We
then maximize the cosine similarity between the two identity embeddings

Lid = 1−
< fid(I f ), fid(Ir) >∥∥∥ fid(I f )

∥∥∥
2
· ∥ fid(Ir)∥2

. (4.12)

Priors: Due to the difficulty of the problem, we use additional priors to
constrain PIXIE to generate plausible solutions. For expression parameters,
we use a Gaussian prior:

Lexp (ψ) = ∥ψ∥2
2 . (4.13)

We also add soft regularization on jaw and face pose:

Ljaw(θjaw) =
∣∣∣θpitch

jaw

∣∣∣2 + ∣∣∣θroll
jaw

∣∣∣2 + ∣∣∣min(θyaw
jaw , 0)

∣∣∣2 , (4.14)

Lface(θface) =
∣∣∣max(

∣∣∣θyaw
face

∣∣∣ , 90)
∣∣∣2 . (4.15)

All these priors are “standard” regularizers, empirically found to discourage
implausible configurations (extreme values, unrealistic shape/pose, inter-
penetrations, etc.).

Gender: As gender strongly affects body shape, we use a gender-specific
shape prior during training, when gender labels are available. For this,
we register SMPL-X to CAESAR [290] scans, and compute the mean µ
and covariance Σ of shape parameters for females and males. Note that
CAESAR does not contain non-binary labels. We then use:

Lshape (β) =


(β− µF)

TΣF(β− µF) if female

(β− µM)TΣM(β− µM) if male

∥β∥2
2 o/w.

(4.16)

When gender is unknown, we use a Gaussian prior computed over all
scans/registrations, irrespective of gender. Please note that we do not need
gender labels for inference.

Feature update loss: We encourage the transformed body features Fp
b (F f

b
or Fh

b ) to match Ffused
p with a loss that was empirically found to stabilize

network training:

Lupdate =
∥∥∥Fp

b − Ffused
p

∥∥∥
1

. (4.17)
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4.3.4 Implementation Details

Training data: For whole-body data we use the curated SMPL-X fits of [56],
and SMPL-X fits to whole-body COCO data [158]. For hand-only data we
use FreiHAND [427] and Total Motion [381]. For face/head data we use
VGGFace2 [42] and detect Nlmk = 68 2D landmarks with the method of
Bulat et al. [39]. We get gender annotations by running the method of
Rothe et al. [297] on many photos per identity and using majority voting to
improve robustness. For data augmentation, see Sec. C.1.

Network training: We do multi-step training that empirically aids stabil-
ity. We pre-train on part-only data, and train on whole-body data end to
end; for details see Sec. C.1.

4.4 experiments

4.4.1 Evaluation Datasets

EHF [270]: We evaluate whole-body accuracy on this. It has 100 RGB images
of 1 minimally-clothed subject in a lab setting with ground-truth SMPL-X
meshes and 3D scans, see Sec. 2.4.1 for more details.

AGORA [269]: We evaluate whole-body and body-only accuracy on
this, using its body-face-hands (BFH) subset. It has rendered [357] photo-
realistic images of 3D human scans [1, 18, 144, 287] in scenes [127, 358].
It has SMPL-X ground truth recovered from scans, images and semantic
labels [407].
3DPW [235]: We evaluate main-body accuracy on this. It captures 5 sub-

jects in indoor/outdoor videos with SMPL pseudo ground truth, recovered
from images and IMUs.

NoW [302]: We use it to evaluate face/head-only accuracy. It contains 3D
head scans for 100 subjects and 2054 images with various viewing angles
and facial expressions.

FreiHAND [427]: We evaluate hand-only accuracy on this. It has 37k
hand/hand-object images of 32 subjects, with MANO ground truth, recov-
ered from multi-view images.
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Method Type
Body
model

Time (s)
PA-V2V (mm) ↓ TR-V2V (mm) ↓ PA-MPJPE (mm) ↓ PA-P2S (mm) ↓

All Body L/R hand Face All Body L/R hand Face MPJPE-14 L/R hand Mean Median

SMPLify-X′ O SMPL-X 40-60 52.9 56.37 11.4/12.6 4.4 79.5 92.3 21.3/22.1 10.9 73.5 12.9/13.2 28.9 18.1

SMPLify-X O SMPL-X 40-60 65.3 75.4 11.6/12.9 4.9 93.0 116.1 23.8/24.9 11.5 87.6 12.2/13.5 36.8 23.0

MTC [381] O Adam 20 N/A N/A N/A N/A N/A N/A N/A N/A 107.8 16.3/17.0 41.3 29.0

SPIN [187] R SMPL 0.01 N/A 60.6 N/A N/A N/A 96.8 N/A N/A 102.9 N/A 40.8 28.7

FrankMocap [295] R SMPL-X 0.08 57.5 52.7 12.8/12.4 N/A 76.9 80.1 32.1 / 31.9 N/A 62.3 13.2/12.6 31.6 19.2

ExPose R SMPL-X 0.16 54.5 52.6 13.1/12.5 4.8 65.7 76.8 31.2 / 32.4 15.9 62.8 13.5/12.7 28.9 18.0

PIXIE (ours) R SMPL-X 0.08-0.10 55.0 53.0 11.2/11.0 4.6 67.6 75.8 25.6/27.0 14.2 61.5 11.7/11.4 29.9 18.4

Table 4.1: Evaluation on EHF. PIXIE is on par with the state of the art w.r.t. body and face performance, but predicts better
hand poses. SMPLify-X′ uses the ground-truth focal length (excluded from bold). Run-times were measured on an Intel Xeon
W-2123 3.60GHz machine with an NVIDIA Quadro P5000 GPU. “O/R” denotes Optimization/Regression.
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4.4.2 Evaluation Metrics

Mesh alignment: Prior to computing a metric, we align estimated meshes to
ground-truth ones. The prefix “PA” denotes Procrustes Alignment (solving
for scale, rotation and translation), while “TR” denotes translation align-
ment. “TR” is stricter, as it does not factor out scale and rotation. When
reporting hand-/face-only metrics for the full body, we align each part
separately.

Mean Per-Joint Position Error (MPJPE): We report the mean Euclidean
distance between the estimated and ground-truth joints. For the body-only
metric, we compute the 14 LSP-common joints [160] as a common skeleton
across different body models, using a linear joint regressor [34, 195] on the
estimated and ground-truth vertices. This is a standard metric, but is too
sparse; it cannot capture errors in full 3D shape (i.e. surface), or all limb
rotation errors.

Vertex-to-Vertex (V2V): For methods that infer meshes with the same
topology as the ground-truth ones, e.g. SMPL(-X) estimations and SMPL(-X)
ground truth, we compute the mean per-vertex error by taking into ac-
count all vertices. This is not possible for methods with different topology,
e.g. SMPL estimations for SMPL-X ground truth, and vice versa. For such
cases, we compute a main-body variant of V2V, i.e. without the hands and
head, as SMPL and SMPL-X share the same topology for the main body.
FB-V2V is the weighted sum of body (B), hand (LH, RH) and face (F) errors:
FB = B + LH+RH+F

3 . V2V is stricter than MPJPE; it also captures 3D shape
errors and unnatural limb rotations (for the same joint positions).

Point-to-Surface (P2S): To compare PIXIE with methods that use a dif-
ferent mesh topology to SMPL(-X), e.g. MTC [381], we measure the mean
distance from ground-truth vertices to the surface of the estimated mesh.
P2S is stricter than MPJPE; it captures errors in 3D shape, but not unnatural
limb rotations (for the same joint positions).

4.4.3 Quantitative Evaluation

Whole-body: In Tabs. 4.1 and 4.2 we report whole-body metrics (“All”),
by taking into account the body, face and hands jointly. We add body-only
(“Body”), hand-only (“L/R hand”), and face-only (“Face”) variants for
completeness.

EHF [270]: Table 4.1 compares PIXIE to three baseline sets: (1) the
optimization-based SMPLify-X, see Chapter 2, and MTC [381] that infer
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Method
PA-V2V (mm) ↓ TR-V2V (mm) ↓
All Body All Body

Naive Body 59.7 54.3 70.5 83.4

“Copy-paste” 60.3 55.5 72.9 82.4

PIXIE (ours) 55.0 53.0 67.6 75.8

Table 4.2: Ablation for our moderator on EHF [270]. “Naive body” denotes a single
regressor for the whole body, and “Copy-Paste” denotes a naive integration of the
independent expert estimations on the inferred body.

SMPL-X and Adam, (2) the regression-based SPIN [187] that infers SMPL,
and (3) the regression-based ExPose, see Chapter 3, and FrankMocap [295]
that infer SMPL-X. Note that MTC does not estimate the face. PIXIE out-
performs optimization methods on most metrics, while being significantly
faster. Moreover, it is on par with regression methods, both in terms of error
metrics and runtime, which drops to 0.08 sec for known body-part crops.

AGORA [269]: Figure 4.4 compares PIXIE to whole-body [56, 270, 295]
and body-only [163, 169, 183, 187, 213, 333] regressors, for a varying occlu-
sion degree. PIXIE outperforms all methods, and is competitive on body-
only metrics even when compared with the occlusion-aware PARE [183].
Note that AGORA is much more complex and natural than EHF, making
the results more representative of real-world scenarios.

Ablation for moderators: Table 4.2 compares PIXIE to naive whole-body
regression (no body-part experts) and the “copy-paste” fusion strategy. The
latter copies pose parameters from the part experts (see [56, 295]), as well
as shape parameters from the face expert, to the whole body.

The naive version does not benefit from the expertise of the part experts.
“Copy-paste” fusion can lead to erroneous hand/face orientation inference,
since the respective experts lack global context. Moreover, estimating whole-
body shape from a face image is not always reliable, e.g. when a person
faces away from the camera (Fig. 4.2). PIXIE fuses “global” body and “local”
part features with its moderators. In this way, it estimates more accurate
3D bodies and is more robust to challenging ambiguities (blur, occlusion)
than existing whole-body regressors, especially on stricter metrics without
Procrustes alignment.

Ablation for “gendered” shape loss on 3DPW [235]: By removing our
“gendered” shape loss, the PA-V2V error increases from 50.9 to 51.7 mm. A
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Figure 4.4: Comparison against state-of-the-art full-body (top) and body-only (bot-
tom) methods on AGORA [269], using the vertex-to-vertex (V2V) metric (mm)
for varying percentages of occlusion. Unless otherwise noted (in parens), we use
OpenPose to extract person bounding boxes. PIXIE outperforms existing methods,
including the occlusion-aware PARE [183].

qualitative ablation is shown in Fig. 4.5; learned implicit reasoning about
gender gives more realistic body shapes. SMPL-X’s shared shape space for
the whole body lets parts contribute to the whole.

Parts-only: For completeness, we use standard benchmarks for body-only,
face-only, and hand-only evaluation.
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Method
Body PA-MPJPE TR-MPJPE Body PA-V2V

model (mm) ↓ (mm) ↓ (mm) ↓

HMR [169] SMPL 81.3 130.0 65.2

SPIN [187] SMPL 59.2 96.9 53.0

FrankMocap [295] SMPL-X 61.9 96.7 55.1

ExPose SMPL-X 60.7 93.4 55.6

PIXIE (ours) SMPL-X 61.3 91.0 50.9

Table 4.3: Evaluation on 3DPW [235]. PIXIE is the best for the stricter TR-MPJPE
(joints) and V2V (surface) metrics.

Body-only on 3DPW [235]: Table 4.3 shows that PIXIE performs on par
FrankMocap [295] and ExPose and is worse than SPIN [187], for the PA-
MPJPE metric, but outperforms them all in the stricter TR-MPJPE (joints)
and V2V (surface) metrics.

Face-only on NoW [302]: Table 4.4 shows that PIXIE’s face expert network
outperforms not only the expressive whole-body method ExPose, but also
strong and dedicated face-only methods, except for the recent work of Feng
et al. [87].

Hand-only on FreiHAND [427]: Table 4.5 shows that our hand expert
performs on par with the whole-body ExPose, is a bit worse than the hand-
specific “MANO CNN” [427], but outperforms the hand expert of Zhou et
al. [423].

4.4.4 Qualitative Evaluation

Figure 4.6 compares PIXIE with FrankMocap [295] and ExPose [56], which
also regresses SMPL-X. Both baselines fail when the hand expert faces
ambiguities (row 2); PIXIE gains robustness by using the full-body context.
Both baselines give body shapes that look average (rows 1, 4) or have the
wrong gender (rows 2, 3); PIXIE gives the most realistic shapes due to its
“gendered” shape loss. FrankMocap fails for strong occlusions (rows 1, 3).
Lastly, ExPose struggles with accurate facial expressions, and FrankMocap
with head rotations (rows 1, 3); PIXIE outperforms both with its strong
face/head expert and predicts a more realistic face.
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Method
PA-P2S for face/head (mm) ↓
Median ↓ Mean ↓ Std ↓

3DMM-CNN [355] 1.84 2.33 2.05

PRNet [89] 1.50 1.98 1.88

Deng et al. [73] 1.23 1.54 1.29

RingNet [302] 1.21 1.54 1.31

3DDFA-V2 [118] 1.23 1.57 1.39

DECA [87] 1.09 1.38 1.18

ExPose 1.26 1.57 1.32

PIXIE (ours) 1.18 1.49 1.25

Table 4.4: Evaluation on NoW [302]. PIXIE is better than the whole-body ExPose, it
outperforms many strong face-specific methods, and is a bit worse than DECA [87].

Method
PA-MPJPE PA-V2V PA-F@ PA-F@

(mm) ↓ (mm) ↓ 5mm ↑ 15mm ↑

“MANO CNN” [427] 11.0 10.9 0.516 0.934

ExPose hand expert 12.2 11.8 0.484 0.918

Zhou et al. [423] 15.7 - - -

PIXIE hand expert 12.0 12.1 0.468 0.919

Table 4.5: Evaluation on FreiHAND [427]. PIXIE’s hand expert is on par with the
hand expert of ExPose, but clearly outperforms the more related Zhou et al. [423]
that also uses hand-body feature fusion.

Figure 4.7 compares PIXIE with Zhou et al. [423], recent work that also
estimates a textured face. PIXIE gives more accurate poses (see how hands
and faces align to the image), as it fuses both face-body and hand-body
expert features, weighted by their confidence. PIXIE also gives more realistic
body shapes, both due to its gendered shape loss and due to part experts
contributing to whole-body shape, using SMPL-X’s shared body, hand, and
face shape space.

62



Figure 4.5: Ablation for the “gendered” shape loss and the shared shape space
(body/head). From left to right: (i) RGB Image, (ii) shape prediction only from the
body image, and PIXIE without (iii) and with (iv) the “gendered” shape loss. We
always use the gender-neutral SMPL-X model.

Future work: Mesh-to-image misalignment is a common limitation of
regressors that pool “global” features from the image, losing local infor-
mation. This could be tackled with “pixel-aligned” features [115, 183, 299,
408]. Moreover, SMPL-X models bodies without clothing; adding clothing
models [63, 228] is a challenging but promising avenue. Furthermore, due to
the formulation of the photometric term the model prefers to explain image
evidence using lighting, rather than albedo, which leads to wrong skin tone
predictions. Future work could further improve cases with self-contact [92,
249], or other extreme ambiguities.

4.5 conclusion

We present PIXIE, a novel expressive whole-body reconstruction method
that recovers an animatable 3D avatar with a detailed face from a single
RGB image. PIXIE uses body-driven attention to leverage dedicated body,
head and face experts. It learns a novel moderator that reasons about the

63



Figure 4.6: Qualitative comparison. From left to right: (i) RGB Image,
(ii) ExPose [270], (iii) FrankMocap [295], (iv) PIXIE, (v) PIXIE with predicted face
albedo and lighting.

confidence of each expert, to fuse their features according to confidence,
and exploit their complementary strengths. It uses the best practices from
the face community for accurate faces with realistic albedo and geometric
details. The face expert can contribute to more realistic whole-body shapes,
by using a shared face-body shape space. To further improve shape, PIXIE
uses implicit reasoning about gender, to encourage likely “gendered” body
shapes. Qualitative results show natural and expressive humans, with im-
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Figure 4.7: Comparison with Zhou et al. [423]. From left to right: (i) RGB image,
(ii) Zhou et al., (iii) PIXIE with inferred facial details and (iv) inferred albedo and
lighting. Note that Zhou et al. use tight face crops through Dlib [178] to improve
performance; PIXIE needs no tight face crops.

proved body shape, well articulated hands, and realistic faces, comparable
to the best face-only methods. We believe that PIXIE will be useful for many
applications that need expressive human understanding from images.
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PA RT II
3 D S H A P E E S T I M AT I O N F R O M

M E T R I C A N D S E M A N T I C
AT T R I B U T E S
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5
A C C U R AT E 3 D B O D Y S H A P E R E G R E S S I O N U S I N G
M E T R I C A N D S E M A N T I C AT T R I B U T E S

Figure 5.1: Existing work on 3D human reconstruction from a color image focuses
mainly on pose. We present SHAPY, a model that focuses on body shape and learns
to predict dense 3D shape from a color image, using crowd-sourced linguistic shape
attributes. Even with this weak supervision, SHAPY outperforms the state of the art
(SOTA) [311] on in-the-wild images with varied clothing.

5.1 introduction

The field of 3D human pose and shape (HPS) estimation is progressing
rapidly and methods now regress accurate 3D pose from a single image [34,
166, 170, 182, 183, 184, 187, 270, 387, 410]. Unfortunately, less attention has
been paid to body shape and many methods produce body shapes that
clearly do not represent the person in the image (Fig. 5.1, top right). There
are several reasons behind this. Current evaluation datasets focus on pose
and not shape. Training datasets of images with 3D ground-truth shape are
lacking. Additionally, humans appear in images wearing clothing that ob-
scures the body, making the problem challenging. Finally, the fundamental
scale ambiguity in 2D images, makes 3D shape difficult to estimate. For
many applications, however, realistic body shape is critical. These include
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AR/VR, apparel design, virtual try-on, and fitness. To democratize avatars,
it is important to represent and estimate all possible 3D body shapes; we
make a step in that direction.

Note that commercial solutions to this problem require users to wear
tight fitting clothing and capture multiple images or a video sequence using
constrained poses. In contrast, we tackle the unconstrained problem of 3D
body shape estimation in the wild from a single RGB image of a person in
an arbitrary pose and standard clothing.

Most current approaches to HPS estimation learn to regress a parametric
3D body model like SMPL [222] from images using 2D joint locations as
training data. Such joint locations are easy for human annotators to label
in images. Supervising the training with joints, however, is not sufficient
to learn shape since an infinite number of body shapes can share the
same joints. For example, consider someone who puts on weight. Their
body shape changes but their joints stay the same. Several recent methods
employ additional 2D cues, such as the silhouette, to provide additional
shape cues [310, 311]. Silhouettes, however, are influenced by clothing and
do not provide explicit 3D supervision. Synthetic approaches [211], on the
other hand, drape SMPL 3D bodies in virtual clothing and render them in
images. While this provides ground-truth 3D shape, realistic synthesis of
clothed humans is challenging, resulting in a domain gap.

To address these issues, we present SHAPY, a new deep neural network
that accurately regresses 3D body shape and pose from a single RGB image.
To train SHAPY, we first need to address the lack of paired training data
with real images and ground-truth shape. Without access to such data,
we need alternatives that are easier to acquire, analogous to 2D joints
used in pose estimation. To do so, we introduce two novel datasets and
corresponding training methods.

First, in lieu of full 3D body scans, we use images of people with diverse
body shapes for which we have anthropometric measurements such as
height as well as chest, waist, and hip circumference. While many 3D human
shapes can share the same measurements, they do constrain the space
of possible shapes. Additionally, these are important measurements for
applications in clothing and health. Accurate anthropometric measurements
like these are difficult for individuals to take themselves but they are
often captured for different applications. Specifically, modeling agencies
provide such information about their models; accuracy is a requirement for
modeling clothing. Thus, we collect a diverse set of such model images (with
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Figure 5.2: Model-agency websites contain multiple images of models together
with anthropometric measurements. A wide range of body shapes are represented;
example from pexels.com.

varied ethnicity, clothing, and body shape) with associated measurements;
see Fig. 5.2.

Since sparse anthropometric measurements do not fully constrain body
shape, we exploit a novel approach and also use linguistic shape attributes.
Prior work has shown that people can rate images of others according to
shape attributes such as “short/tall”, “long legs” or “pear shaped” [329];
see Fig. 5.3. Using the average scores from several raters, Streuber et al. [329]
(BodyTalk) regress metrically accurate 3D body shape. This approach gives
us a way to easily label images of people and use these labels to constrain
3D shape. To our knowledge, this sort of linguistic shape attribute data has
not previously been exploited to train a neural network to infer 3D body
shape from images.

We exploit these new datasets to train SHAPY with three novel losses,
which can be exploited by any 3D human body reconstruction method: (1)
We define functions of the SMPL body mesh that return a sparse set of
anthropometric measurements. When measurements are available for an
image we use a loss that penalizes mesh measurements that differ from
the ground-truth (GT). (2) We learn a “Shape to Attribute” (S2A) function
that maps 3D bodies to linguistic attribute scores . During training, we map
meshes to attribute scores and penalize differences from the GT scores. (3)
We similarly learn a function that maps “Attributes to Shape” (A2S). We
then penalize body shape parameters that deviate from the prediction.
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Figure 5.3: We crowd-source scores for linguistic body-shape attributes [329] and
compute anthropometric measurements for CAESAR [290] body meshes. We also
crowd-source linguistic shape attribute scores for model images, like those in
Fig. 5.2

We study each term in detail to arrive at the final method. Evaluation is
challenging because existing benchmarks with GT shape either contain too
few subjects [235] or have limited clothing complexity and only pseudo-GT
shape [310]. We fill this gap with a new dataset, named “Human Bodies in
the Wild” (HBW), that contains a ground-truth 3D body scan and several
in-the-wild photos of 35 subjects, for a total of 2543 photos. Evaluation on
this shows that SHAPY estimates much more accurate 3D shape.

Models, data and code are available at https://shapy.is.tue.mpg.de.

5.2 related work

3D human pose and shape (HPS): Methods that reconstruct 3D human
bodies from one or more RGB images can be split into two broad cate-
gories: (1) parametric methods that predict parameters of a statistical 3D
body model, such as SCAPE [15], SMPL [222], SMPL-X, see Sec. 2.3.1,
Adam [166], GHUM [387], and (2) non-parametric methods that predict a
free-form representation of the human body [155, 300, 359, 385]. Parametric
approaches lack details w.r.t. non-parametric ones, e.g., clothing or hair.
However, parametric models disentangle the effects of identity and pose on
the overall shape. Therefore, their parameters provide control for re-shaping
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and re-posing. Moreover, pose can be factored out to bring meshes in a
canonical pose; this is important for evaluating estimates of an individual’s
shape. Finally, since topology is fixed, meshes can be compared easily. For
these reasons, we use a SMPL-X body model.

Parametric methods follow two main paradigms, and are based on op-
timization or regression. Optimization-based methods [23, 34, 114, 270]
search for model configurations that best explain image evidence, usually
2D landmarks [43], subject to model priors that usually encourage parame-
ters to be close to the mean of the model space. Numerous methods penalize
the discrepancy between the projected and ground-truth silhouettes [140,
195] to estimate shape. However, this needs special care to handle cloth-
ing [22]; without this, erroneous solutions emerge that “inflate” body shape
to explain the “clothed” silhouette. Regression-based methods [56, 109, 156,
169, 182, 187, 211, 249, 401] are currently based on deep neural networks
that directly regress model parameters from image pixels. Their training
sets are a mixture of data captured in laboratory settings [150, 317], with
model parameters estimated from MoCap markers [232], and in-the-wild
image collections, such as COCO [215], that contain 2D keypoint anno-
tations. Optimization and regression can be combined, for example via
in-the-network model fitting [187, 249].

Estimating 3D body shape: State-of-the-art methods are effective for
estimating 3D pose, but struggle with estimating body shape under clothing.
There are several reasons for this. First, 2D keypoints alone are not sufficient
to fully constrain 3D body shape. Second, shape priors address the lack of
constraints, but bias solutions towards “average” shapes [34, 187, 249, 270].
Third, datasets with in-the-wild images have noisy 3D bodies, recovered
by fitting a model to 2D keypoints [34, 270]. Fourth, datasets captured in
laboratory settings have a small number of subjects, who do not represent
the full spectrum of body shapes. Thus, there is a scarcity of images with
known, accurate, 3D body shape. Existing methods deal with this in two
ways.

First, rendering synthetic images is attractive since it gives automatic and
precise ground-truth annotation. This involves shaping, posing, dressing
and texturing a 3D body model [135, 310, 312, 360, 373], then lighting it and
rendering it in a scene. Doing this realistically and with natural clothing is
expensive, hence, current datasets suffer from a domain gap. Alternative
methods use artist-curated 3D scans [269, 299, 300], which are realistic but
limited in variety.
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Second, 2D shape cues for in-the-wild images, (body-part segmentation
masks [78, 262, 298], silhouettes [4, 140, 272]) are attractive, as these can be
manually annotated or automatically detected [112, 128]. However, fitting
to such cues often gives unrealistic body shapes, by inflating the body to
“explain” the clothing “baked” into silhouettes and masks.

Most related to our work is the work of Sengupta et al. [310, 311, 312] who
estimate body shape using a probabilistic learning approach, trained on
edge-filtered synthetic images. They evaluate on the SSP-3D dataset of real
images with pseudo-GT 3D bodies, estimated by fitting SMPL to multiple
video frames. SSP-3D is biased to people with tight-fitting clothing. Their
silhouette-based method works well on SSP-3D but does not generalize to
people in normal clothing, tending to over-estimate body shape; see Fig. 5.1.

In contrast to previous work, SHAPY is trained with in-the-wild images
paired with linguistic shape attributes, which are annotations that can
be easily crowd-sourced for weak shape supervision. We also go beyond
SSP-3D to provide HBW, a new dataset with in-the-wild images, varied
clothing, and precise GT from 3D scans.

Shape, measurements and attributes: Body shapes can be generated from
anthropometric measurements [10, 313, 314]. Tsoli et al. [354] register a body
model to multiple high-resolution body scans to extract body measurements.
The “Virtual Caliper” [281] allows users to build metrically accurate avatars
of themselves using measurements or VR game controllers. ViBE [137]
collects images, measurements (bust, waist, hip circumference, height)
and the dress-size of models from clothing websites to train a clothing
recommendation network. We draw inspiration from these approaches for
data collection and supervision.

Streuber et al. [329] learn BodyTalk, a model that generates 3D body
shapes from linguistic attributes. For this, they select attributes that describe
human shape and ask annotators to rate how much each attribute applies
to a body. They fit a linear model that maps attribute ratings to SMPL
shape parameters. Inspired by this, we collect attribute ratings for CAESAR
meshes [290] and in-the-wild data as proxy shape supervision to train a
HPS regressor. Unlike BodyTalk, SHAPY automatically infers shape from
images.

Anthropometry from images: Single-View metrology [64] estimates the
height of a person in an image, using horizontal and vertical vanishing
points and the height of a reference object. Günel et al. [117] introduce the
IMDB-23K dataset by gathering publicly available celebrity images and
their height information. Zhu et al. [424] use this dataset to learn to predict
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Figure 5.4: Shape representations and data collection. Our goal is 3D body shape
estimation from in-the-wild images. Collecting data for direct supervision is difficult
and does not scale. We explore two alternatives. Linguistic Shape Attributes: We
annotate attributes (“A”) for CAESAR meshes, for which we have accurate shape
(“S”) parameters, and learn the “A2S” and “S2A” models, to map between these
representations. Attribute annotations for images can be easily crowd-sourced,
making these scalable. Anthropometric Measurements: We collect images with
sparse body measurements from model-agency websites. A virtual measurement
module [281] computes the measurements from 3D meshes. Training: We combine
these sources to learn a regressor with weak supervision that infers 3D shape from
an image.

the height of people in images. Dey et al. [74] estimate the height of users
in a photo collection by computing height differences between people in
an image, creating a graph that links people across photos, and solving a
maximum likelihood estimation problem. Bieler et al. [31] use gravity as
a prior to convert pixel measurements extracted from a video to metric
height. These methods do not address body shape.

5.3 representations & data for body shape

We use linguistic shape attributes and anthropometric measurements as a
connecting component between in-the-wild images and ground-truth body
shapes; see Fig. 5.4. To that end, we annotate linguistic shape attributes for
3D meshes and in-the-wild images, the latter from fashion-model agencies,
labeled via Amazon Mechanical Turk.
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Figure 5.5: Histogram of height and chest/waist/hips circumference for data from
model-agency websites (Sec. 5.3.2) and CAESAR. Model-agency data is diverse, yet
not as much as CAESAR data.

5.3.1 SMPL-X Body Model

We use SMPL-X [270], described in Sec. 2.3.1, to represent the human body
and adopt the notation of Sec. 3.3.1.

5.3.2 Model-Agency Images

Model agencies typically provide multiple color images of each model, in
various poses, outfits, hairstyles, scenes, and with a varying camera framing,
together with anthropometric measurements and clothing size. We collect
training data from multiple model-agency websites, focusing on under-
represented body types, namely: curve-models.com, cocainemodels.com,
nemesismodels.com, jayjay-models.de, kultmodels.com, modelwerk.de,
models1.co.uk. showcast.de, the-models.de, and ullamodels.com. In addi-
tion to photos, we store gender and four anthropometric measurements,
i.e. height, chest, waist and hip circumference, when available. To avoid
having the same subject in both the training and test set, we match model
identities across websites to identify models that work for several agencies.
For details, see Sec. D.1.1.

After identity filtering, we have 94, 620 images of 4, 419 models along
with their anthropometric measurements. However, the distributions of
these measurements, shown in Fig. 5.5, reveal a bias for “fashion model”
body shapes, while other body types are under-represented in comparison
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Male & Female Male only Female only

short long neck skinny arms pear-shaped

big long legs average petite

tall long torso rectangular slim waist

muscular short arms delicate build large breasts

broad shoulders soft body skinny legs

masculine feminine

Table 5.1: Linguistic shape attributes for human bodies. Some attributes apply to
both genders, but others are gender-specific.

to CAESAR [290]. To enhance diversity in body-shapes and avoid strong
biases and log tails, we compute the quantized 2D-distribution for height
and weight and sample up to 3 models per bin. This results in N = 1, 185
models (714 females, 471 males) and 20, 635 images.

5.3.3 Linguistic Shape Attributes

Human body shape can be described by linguistic shape attributes [132].
We draw inspiration from Streuber et al. [329] who collect scores for 30
linguistic attributes for 256 3D body meshes, generated by sampling SMPL’s
shape space, to train a linear “attribute to shape” regressor. In contrast,
we train a model that takes as input an image, instead of attributes, and
outputs an accurate 3D shape (and pose).

We crowd-source linguistic attribute scores for a variety of body shapes,
using images from the following sources:

Rendered CAESAR images: We use CAESAR [290] bodies to learn map-
pings between linguistic shape attributes, anthropometric measurements,
and SMPL-X shape parameters, β. Specifically, we register a “gendered”
SMPL-X model with 100 shape components to 1, 700 male and 2, 102 female
3D scans, pose all meshes in an A-pose, and render synthetic images with
the same virtual camera.

Model-agency photos: Each annotator is shown 3 body images per
subject, sampled from the image pool of Sec. 5.3.2.

Annotation: To keep annotation tractable, we use A = 15 linguistic shape
attributes per gender (subset of BodyTalk’s [329] attributes); see Tab. 5.1.
Each image is annotated by K = 15 annotators on Amazon Mechanical
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Turk. Their task is to “indicate how strongly [they] agree or disagree that the
[listed] words describe the shape of the [depicted] person’s body”; for an example,
see Sec. D.1.2. Annotations range on a discrete 5-level Likert scale from
1 (strongly disagree) to 5 (strongly agree). We get a rating matrix A ∈
{1, 2, 3, 4, 5}N×A×K, where N is the number of subjects. In the following, aijk
denotes an element of A.

5.4 mapping shape representations

In Sec. 5.3 we introduce three body-shape representations: (1) SMPL-X’s
PCA shape space (Sec. 5.3.1), (2) anthropometric measurements (Sec. 5.3.2),
and (3) linguistic shape attribute scores (Sec. 5.3.3). Here we learn mappings
between these, so that in Sec. 5.5 we can define new losses for training body
shape regressors using multiple data sources.

5.4.1 Virtual Measurements (VM)

We obtain anthropometric measurements from a 3D body mesh in a T-pose,
namely height, H(β), weight, W(β), and chest, waist and hip circum-
ferences, Cc(β), Cw(β), and Ch(β), respectively, by following Wuhrer et
al. [380] and the “Virtual Caliper” [281]. For details on how we compute
these measurements, see Sec. D.2.1.

5.4.2 Attributes and 3D Shape

Attributes to Shape (A2S): We predict SMPL-X shape coefficients from
linguistic attribute scores with a second-degree polynomial regression
model. For each shape βi, i = 1 . . . N, we create a feature vector, xA2S

i , by
averaging for each of the A attributes the corresponding K scores:

xA2S
i = [āi,1, . . . , āi,A], āi,j =

1
K

K

∑
k=1

aijk, (5.1)

where i is the shape index (list of “fashion” or CAESAR bodies), j is the
attribute index, and k the annotation index.
We then define the full feature matrix for all N shapes as:

XA2S = [ϕ(xA2S
1 ), . . . , ϕ(xA2S

N )]⊤, (5.2)

where ϕ(xA2S
i ) maps xi to 2

nd order polynomial features.
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The target matrix Y = [β1, . . . , βN ]
⊤ contains the shape parameters βi =

[βi,1, . . . , βi,B]
⊤. We compute the polynomial model’s coefficients W via

least-squares fitting:
Y = XW + ϵ. (5.3)

Empirically, the polynomial model performs better than several models that
we evaluated; for details, see Tab. D.1.

Shape to Attributes (S2A): We predict linguistic attribute scores , A, from
SMPL-X shape parameters, β. Again, we fit a second-degree polynomial
regression model. S2A has “swapped” inputs and outputs w.r.t. A2S:

xS2A
i = [βi,1, . . . , βi,B], (5.4)

yi = [āi,1, . . . , āi,A]
⊤. (5.5)

Attributes & Measurements to Shape (AHWC2S): Given a sparse set of
anthropometric measurements, we predict SMPL-X shape parameters, β.
The input vector is:

xHWC2S
i = [hi, wi, cci , cwi , chi

], (5.6)

where cc, cw, ch is the chest, waist, and hip circumference, respectively, h
and w are the height and weight, and HWC2S means Height + Weight +
Circumference to Shape. The regression target is the SMPL-X shape parame-
ters, yi.

When both Attributes and measurements are available, we combine them
for the AHWC2S model with input:

xAHWC2S
i = [āi,1, . . . , āi,A, hi, wi, cci , cwi , chi

]. (5.7)

In practice, depending on which measurements are available, we train and
use different regressors. Following the naming convention of AHWC2S,
these models are: AH2S, AHW2S, AC2S, and AHC2S, as well as their
equivalents without attribute input H2S, HW2S, C2S, and HC2S. For an
evaluation of the contribution of linguistic shape attributes on top of each
anthropometric measurement, see Sec. D.4.2.

Training Data: To train the A2S and S2A mappings we use CAESAR
data, for which we have SMPL-X shape parameters, anthropometric mea-
surements, and linguistic attribute scores. We train separate gender-specific
models.
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5.5 3d shape regression from an image

We present SHAPY, a network that predicts SMPL-X parameters from an
RGB image with more accurate body shape than existing methods. To
improve the realism and accuracy of shape, we explore training losses
based on all shape representations discussed above, i.e., SMPL-X meshes
(Sec. 5.3.1), linguistic attribute scores (Sec. 5.3.3) and anthropometric
measurements (Sec. 5.4.1). In the following, symbols with/-out a hat are
regressed/ground-truth values.

We convert shape β̂ to height and circumferences values {Ĥ, Ĉc, Ĉw, Ĉh} =
{H(β̂), Cc(β̂), Cw(β̂), Ch(β̂)} by applying our virtual measurement tool
(Sec. 5.4.1) to the mesh M(β̂) in the canonical T-pose. We also convert shape
β̂ to linguistic attribute scores , with Â = S2A(β̂).

We train various SHAPY versions with the following “SHAPY losses”,
using either linguistic shape attributes, or anthropometric measurements,
or both:

Lattr = ||A− Â||22, (5.8)

Lheight = ||H − Ĥ||22, (5.9)

Lcirc = ∑i∈{c,w,h} ||Ci − Ĉi||22 (5.10)

These are optionally added to a base loss, Lbase, defined below in “training
details”. The architecture of SHAPY, with all optional components, is shown
in Fig. 5.6. A suffix of color-coded letters describes which of the above
losses are used when training a model. For example, SHAPY-AH denotes
a model trained with the attribute and height losses, i.e.: LSHAPY-AH2S =
Lbase + Lattr + Lheight.

Training Details: We initialize SHAPY with the ExPose [56] network
weights and use curated fits [56], H3.6M [150], the SPIN [187] training
data, and our model-agency dataset (Sec. 5.3.2) for training. In each batch,
50% of the images are sampled from the model-agency images, for which
we ensure a gender balance. The “SHAPY losses” of Eqs. (5.8) to (5.10)
are applied only on the model-agency images. We use these on top of a
standard base loss:

Lbase = Lpose + Lshape, (5.11)
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Figure 5.6: SHAPY first estimates shape, β̂, and pose, θ̂. Shape is used by: (1)
our virtual anthropometric measurement (VM) module to compute height, Ĥ, and
circumferences, Ĉ, and (2) our S2A module to infer linguistic attribute scores , Â.
There are several SHAPY variations, e.g., SHAPY-H uses only VM to infer Ĥ, while
SHAPY-HA uses VM to infer Ĥ and S2A to infer Â.

where L2D
joints and L3D

joints are 2D and 3D joint losses, defined in Eqs. (3.8)
and (3.9):

Lpose = L2D
joints + L3D

joints + Lθ , (5.12)

Lshape = Lβ + Lprior
β , (5.13)

Lθ and Lβ are losses on pose and shape parameters, see Eq. (3.10), and

Lprior
β is PIXIE’s [86] “gendered” shape prior, defined in Eq. (4.16). All losses

are L2, unless otherwise explicitly specified. Losses on SMPL-X parameters
are applied only on the pose data [56, 150, 187]. For more implementation
details, see Sec. D.3.

5.6 experiments

5.6.1 Evaluation Datasets

3D Poses in the Wild (3DPW) [235]: We use this to evaluate pose accuracy.
This is widely used, but has only 5 test subjects, i.e., limited shape variation.
For results, see Sec. D.4.3.

Sports Shape and Pose 3D (SSP-3D) [310]: We use this to evaluate 3D
body shape accuracy from images. It has 62 tightly-clothed subjects in 311
in-the-wild images from Sports-1M [171], with pseudo ground-truth SMPL
meshes that we convert to SMPL-X for evaluation.
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Model Measurements Test Set (MMTS): We use this to evaluate an-
thropometric measurement accuracy, as a proxy for body shape accuracy.
To create MMTS, we withhold 2699/1514 images of 143/95 female/male
identities from our model-agency data, described in Sec. 5.3.2

CAESAR Meshes Test Set (CMTS): We use CAESAR to measure the
accuracy of SMPL-X body shapes and linguistic shape attributes for the
models of Sec. 5.4. Specifically, we compute: (1) errors for SMPL-X meshes
estimated from linguistic shape attributes and/or anthropometric mea-
surements by A2S and its variations, and (2) errors for linguistic shape
attributes estimated from SMPL-X meshes by S2A. To create an unseen
mesh test set, we withhold 339 male and 410 female CAESAR meshes
from the crowd-sourced CAESAR linguistic shape attributes, described in
Sec. 5.3.3.

Human Bodies in the Wild (HBW): The field is missing a dataset
with varied bodies, varied clothing, in-the-wild images, and accurate 3D
shape ground truth. We fill this gap by collecting a novel dataset, called

“Human Bodies in the Wild” (HBW), with three steps: (1) We collect accurate
3D body scans for 35 subjects (20 female, 15 male), and register a “gen-
dered” SMPL-X model to these to recover 3D SMPL-X ground-truth bod-
ies [278]. (2) We take photos of each subject in “photo-lab” settings, i.e.,
in front of a white background with controlled lighting, and in various
everyday outfits and “fashion” poses. (3) Subjects upload full-body photos
of themselves taken in the wild. For each subject we take up to 111 photos
in lab settings, and collect up to 126 in-the-wild photos. In total, HBW has
2543 photos, 1,318 in the lab setting and 1,225 in the wild. We split the
data into a validation and a test set (val/test) with 10/25 subjects (6/14

female 4/11 male) and 781/1,762 images (432/983 female 349/779 male), re-
spectively. Figure 5.7 shows a few HBW subjects, photos and their SMPL-X
ground-truth shapes. All subjects gave prior written informed consent to
participate in this study and to release the data. The study was reviewed by
the ethics board of the University of Tübingen, without objections.

5.6.2 Evaluation Metrics

We use standard accuracy metrics for 3D body pose, but also introduce
metrics specific to 3D body shape.

Anthropometric Measurements: We report the mean absolute error in
mm between ground-truth and estimated measurements, computed as
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Figure 5.7: “Human Bodies in the Wild” (HBW) color images, taken in the lab and
in the wild, and the SMPL-X ground-truth shape.

described in Sec. 5.4.1. When weight is available, we report the mean
absolute error in kg.

MPJPE and V2V metrics: We report in Sec. D.4.3 the mean per-joint
point error (MPJPE) and mean vertex-to-vertex error (V2V), when SMPL-X
meshes are available. The prefix “PA” denotes metrics after Procrustes
alignment.

Mean point-to-point error (P2P20K): SMPL-X has a highly non-uniform
vertex distribution across the body, which negatively biases the mean vertex-
to-vertex (V2V) error, when comparing estimated and ground-truth SMPL-X
meshes. To account for this, we evenly sample 20K points on SMPL-X’s
surface, and report the mean point-to-point (P2P20K) error. For details, see
Sec. D.4.1.

5.6.3 Shape-Representation Mappings

We evaluate the models A2S and S2A, which map between the various
body shape representations (Sec. 5.4).

A2S and its variations: How well can we infer 3D body shape from just
linguistic shape attributes, anthropometric measurements, or both of these
together? In Tab. 5.2, we report reconstruction and measurement errors
using many combinations of attributes (A), height (H), weight (W), and
circumferences (C). Evaluation on CMTS data shows that attributes improve
the overall shape prediction across the board. For example, height+attributes
(AH2S) has a lower point-to-point error than height alone. The best per-
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Method P2P20K Height Weight Chest Waist Hips

- (mm) (mm) (kg) (mm) (mm) (mm)

M
al

e
su

bj
ec

ts

A2S 11.1± 5.2 29± 21 5± 4 30± 22 32± 24 28± 21

H2S 12.1± 6.1 5± 4 11± 11 81± 66 102± 87 40± 33

AH2S 6.8± 2.3 4± 3 3± 3 27± 21 29± 23 24± 18

HW2S 8.1± 2.7 5± 4 1± 1 24± 17 26± 20 21± 18

AHW2S 6.3± 2.1 4± 3 1± 1 19± 15 19± 14 20± 16

C2S 19.7± 11.1 59± 47 9± 8 55± 41 63± 49 37± 28

AC2S 9.6± 4.4 25± 19 3± 3 23± 19 21± 17 18± 14

HC2S 7.7± 2.6 5± 4 2± 2 28± 23 18± 15 13± 11

AHC2S 6.0± 2.0 4± 3 2± 2 21± 17 17± 14 13± 10

HWC2S 7.3± 2.6 5± 4 1± 1 20± 15 14± 12 13± 11

AHWC2S 5.8± 2.0 4± 3 1± 1 16± 13 13± 10 13± 10

Table 5.2: Results of A2S variants on CMTS for male subjects, using the male
SMPL-X model. For females, see Tab. D.2.

forming model, AHWC, uses everything, with P2P20K-errors of 5.8± 2.0
mm (males) and 6.2± 2.4 mm (females).

S2A: How well can we infer linguistic shape attributes from 3D shape?
S2A’s accuracy on inferring the attribute Likert score is 75%/69% for
males/females; details in Tab. D.5.

5.6.4 3D Shape from an Image

We evaluate all of our model’s variations (see Sec. 5.5) on the HBW valida-
tion set and find, perhaps surprisingly, that SHAPY-A outperforms other
variants. We refer to this below (and Fig. 5.1) simply as “SHAPY” and
report its performance in Tab. 5.3 for HBW, Tab. 5.4 for MMTS, and Tab. 5.5
for SSP-3D. For images with natural and varied clothing (HBW, MMTS),
SHAPY significantly outperforms all other methods (Tabs. 5.3 and 5.4) using
only weak 3D shape supervision (Attributes). On these images, Sengupta
et al.’s method [311] struggles with the natural clothing.
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Figure 5.8: Qualitative results from HBW. From left to right: RGB, ground-truth shape, SHAPY and Sengupta et al. [311]. For
example, in the upper- and lower- right images, SHAPY is less affected by pose variation and loose clothing.
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Method Model Height Chest Waist Hips P2P20K

SMPLR [231] SMPL 182 267 309 305 69

STRAPS [310] SMPL 135 167 145 102 47

SPIN [187] SMPL 59 92 78 101 29

TUCH [249] SMPL 58 89 75 57 26

Sengupta et al. [311] SMPL 82 133 107 63 32

ExPose SMPL-X 85 99 92 94 35

SHAPY (ours) SMPL-X 51 65 69 57 21

Table 5.3: Evaluation on the HBW test set in mm. We compute the measurement
and point-to-point (P2P20K) error between predicted and ground-truth SMPL-X
meshes.

In contrast, their method is more accurate than SHAPY on SSP-3D
(Tab. 5.5), which has tight “sports" clothing, in terms of V2V-T-SC, a scale-
normalized metric used on this dataset. These results show that silhouettes
are good for tight/minimal clothing and that SHAPY struggles with high
BMI shapes due to the lack of such shapes in our training data; see Fig. 5.5.
Note that, as HBW has true ground-truth 3D shape, it does not need
SSP-3D’s scaling for evaluation.

Mean absolute error (mm) ↓
Method Model Height Chest Waist Hips

Sengupta et al. [311] SMPL 84 186 263 142

TUCH [249] SMPL 82 92 129 91

SPIN [187] SMPL 72 91 129 101

STRAPS [310] SMPL 207 278 326 145

ExPose SMPL-X 107 107 136 92

SHAPY (ours) SMPL-X 71 64 98 74

Table 5.4: Evaluation on MMTS. We report the mean absolute error between
ground-truth and estimated measurements.
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Method Model V2V-T-SC mIOU

HMR [169] SMPL 22.9 0.69

SPIN [187] SMPL 22.2 0.70

STRAPS [310] SMPL 15.9 0.80

Sengupta et al. [311] SMPL 13.6 -

SHAPY (ours) SMPL-X 19.2 -

Table 5.5: Evaluation on the SSP-3D test set [310]. We report the scaled mean vertex-
to-vertex error in T-pose [310], and mIOU.

A key observation is that training with linguistic shape attributes alone
is sufficient, i.e., without anthropometric measurements. Importantly, this
opens up the possibility for significantly larger data collections. For a study
of how different measurements or attributes impact accuracy, see Sec. D.4.2.
Figure 5.8 shows SHAPY’s qualitative results.

5.7 conclusion

SHAPY is trained to regress more accurate human body shape from images
than previous methods, without explicit 3D shape supervision. To achieve
this, we present two different ways to collect proxy annotations for 3D
body shape for in-the-wild images. First, we collect sparse anthropometric
measurements from online model-agency data. Second, we annotate images
with linguistic shape attributes using crowd-sourcing. We learn mappings
between body shape, measurements, and attributes, enabling us to super-
vise a regressor using any combination of these. To evaluate SHAPY, we
introduce a new shape estimation benchmark, the “Human Bodies in the
Wild” (HBW) dataset. HBW has images of people in natural clothing and
natural settings together with ground-truth 3D shape from a body scanner.
HBW is more challenging than existing shape benchmarks like SSP-3D, and
SHAPY significantly outperforms existing methods on this benchmark. We
believe this work will open new directions, since the idea of leveraging
linguistic annotations to improve 3D shape has many applications.

Limitations: Our model-agency training dataset (Sec. 5.3.2) is not repre-
sentative of the entire human population and this limits SHAPY’s ability to
predict larger body shapes. To address this, we need to find images of more
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diverse bodies together with anthropometric measurements and linguistic
shape attributes describing them.

Social impact: Knowing the 3D shape of a person has advantages, for
example, in the clothing industry to avoid unnecessary returns. If used
without consent, 3D shape estimation may invade individuals’ privacy.
As with all other 3D pose and shape estimation methods, surveillance
and deep-fake creation is another important risk. Consequently, SHAPY’s
license prohibits such uses.
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6
L E A R N I N G T O F I T M O R P H A B L E M O D E L S

6.1 introduction

Fitting parametric models [15, 79, 166, 270, 293, 387] to noisy input data
is one of the most common tasks in computer vision. Notable examples
include fitting the 3D body [34, 183, 187, 381], face [79], and hands [20, 36,
126, 316].

Direct regression using neural networks, such as the methods presented
in Chapters 3 to 5, is the de facto tool to estimate model parameters from
observations. While the obtained predictions are robust and accurate to a
large extent, they often fail to tightly fit the observations [410] and require
large quantities of annotated data. Classic optimization methods, e.g. the
Levenberg-Marquardt algorithm [199, 236] or SMPLify-X from Chapter 2,
can tightly fit the parametric model to the data by iteratively minimizing
a hand-crafted energy function, but are getting dragged to local minima
and require good starting points for fast convergence, Hence, practition-
ers combine these two approaches to benefit from their complementary
strengths, initializing the model parameters from a regressor, followed by
energy minimization using a classic optimizer.

If we look one level deeper, optimization-based model fitting methods
have another disadvantage of often requiring hand-crafted energy functions
that are difficult to define and non-trivial to tune. Besides the data terms,
which have clear definitions, each fitting problem effectively requires the
definition of their own prior terms and regularization terms. Besides the
work required to formulate these terms and train the priors, domain experts
needs to spend significant amounts of time to balance the effect of each term.
Since these priors are often hand-defined or assumed to follow distributions
that are tractable / easy to optimize, the resulting fitting energy usually
contains biases that can limit the accuracy of the resulting fits.

To get the best of both regression using deep learning and classical numer-
ical optimization, we turn to the field of machine learning based continuous
optimization [14, 59, 306, 307, 324, 402]. Here, instead of updating the model
parameters using a first or second order model fitter, a network learns to
iteratively update the parameters that minimize the target loss, with the
added benefit of optimized ML back-ends for fast inference. End-to-end
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Figure 6.1: Top to bottom: (i) Head and hand tracking signals from AR/VR devices,
(ii) the corresponding body model fit obtained from regression followed by iterative
mathematical optimization, (iii) body model fit obtained from our learned optimizer
(iv) and our estimate overlaid with the ground-truth. Learned optimizers are fast,
able to tightly fit the input data and require significantly less manual labor to
achieve this result. All results are estimated independently per-frame.
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network training removes the need for hand-crafted priors, since the model
learns them directly from data.

Inspired by the properties of the popular Levenberg-Marquardt and
Adam [180] algorithms, our main contribution extends the system pre-
sented in [324] with an iterative machine learning solver which (i) keeps
information from previous iterations, (ii) controls the learning rate of each
variable independently and (iii) combines updates from gradient descent
and from a network that is capable of swiftly reducing the fitting energy,
for robustness and convergence speed. We evaluate our approach on differ-
ent challenging scenarios: full-body tracking from head and hand inputs
only, e.g. given by a device like the HoloLens 2, body estimation from 2D
keypoints and face tracking from 2D landmarks, demonstrating both high
quality results and versatility of the proposed framework.

6.2 related work

Learning to optimize [14, 306, 307] is a field that, casts optimization as
a learning problem. The goal is to create models that learn to exploit the
problem structure, producing faster and more effective energy minimiz-
ers. In this way, we can remove the need for hand-designed parameter
update rules and priors, since we can learn them directly from the data.
This approach has been used for image denoising and depth-from-stereo
estimation [363], rigid motion estimation [226], view synthesis [95], joint
estimation of motion and scene geometry [59], non-linear tomographic
inversion problem with simulated data [3], face alignment [384] and object
reconstruction from a single image [186].

Parametric human model fitting: The seminal work of Blanz and Vet-
ter [33] introduced a parametric model of human faces and a user-assisted
method to fit the model to images. Since then, the field has evolved and
produced better face models and faster, more accurate and more robust es-
timation methods [79]. With the introduction of SMPL [222], the field of 3D
body pose and shape estimation has been rapidly progressing. The commu-
nity has created large motion databases [232] from motion capture data, as
well as datasets, both real and synthetic, with images and corresponding 3D
body ground-truth [124, 235, 269]. Thanks to these, we can now train neural
network regressors that can reliably predict SMPL parameters from im-
ages [163, 169, 187, 189, 203, 410] and videos [53, 182]. With the introduction
of expressive models [166, 270, 387], the latest regression approaches [56,
86, 295] can now predict the 3D body, face and hands. However, one com-
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mon issue, present in all regression scenarios, is the misalignment of the
predictions and the input data [309, 410]. Thus, they often serve as the
initial point for an optimization-based method [34, 270, 381], which refines
the estimated parameters until some convergence criterion is met. This
combination produces system that are effective, robust and able to work in
real-time and under challenging conditions [248, 316, 338]. These hybrid
regression-optimization systems are also effective pseudo annotators for
in-the-wild images [187], where standard capture technologies are not appli-
cable. However, formulating the correct energy terms and finding the right
balance between them is a challenging and time-consuming task. Further-
more, adapting the optimizer to run in real-time is a non-trivial operation,
even when using popular algorithms such as the Levenberg-Marquardt
algorithm [146, 199, 236] which has a cubic complexity. Thus, explicitly
computing the Jacobian [59, 226] is often prohibitive in practice, either in
terms of memory or runtime. The most common and practical way to speed
up the optimization is to utilize the sparsity of the problem or make certain
assumptions to simplify it [82]. Learned optimizers promise to overcome
these issues, by learning the parametric model priors directly from the
data and taking more aggressive steps, thus converging in fewer iterations.
The effectiveness of these approaches has been demonstrated in different
scenarios, such as fitting a body model [222, 387] to images [324, 402] and
videos [399], to sparse sensor data from electromagnetic sensors [174] and
multi-body estimation from multi-view images [76].

We propose a new update rule, computed as a weighted combination of
the gradient descent step and the network update [324], where their relative
weights are a function of the residuals. Many popular optimizers have an
internal memory, such as Adam’s [180] running averages, Clark et al.’s [59]
and Neural Descent’s [402] RNN. We adopt this insight, using an RNN to
predict the network update and the combination weights. In this way, the
network can choose to follow either the gradient or the network direction
more, using both the current and past residual values.

Estimating 3D human pose from a head-mounted device: is a difficult
problem, due to self-occlusions caused by the position of the headset and
the sparsity of the input signals [390]. Yuan and Kitani [397, 398] cast this as
a control problem, where a model learns to produce target joint angles for
a Proportional-Derivative (PD) controller. Other methods [350, 351] tackle
this as a learning problem, where a neural network learns to predict the
3D pose from the cameras mounted on the HMD. Guzov et al. [119] use
sensor data from IMUs placed on the subject’s body and combine them
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with camera self-localization. They formulate an optimization problem with
scene constraints, enabling the capture of long-term motions that respect
scene constraints, such as foot contact with the ground. Finally, Dittadi et
al. [75] propose a likelihood model that maps head and hand signals to
full body poses. In our work, we focus on this scenario and empirically
show that the proposed optimizer rule is competitive, both with a classic
optimization baseline and a state-of-the-art likelihood model [75].

6.3 method

6.3.1 Neural Fitter

Levenberg-Marquardt (LM) [146, 199, 236] and Powell’s dog leg method
(PDL) [280] are examples of popular iterative optimization algorithms
used in applications that fit either faces or full human body models to
observations. These techniques employ the Gauss-Newton algorithm for
both its convergence rate approaching the quadratic regime and its com-
putational efficiency, enabling real-time model fitting applications, e.g.
generative face [346, 429] and hand [316, 338] tracking. For robustness,
LM and PDL both combine the Gauss-Newton algorithm and gradient
descent, leading to implicit and explicit trust regions being used when
calculating updates, respectively. In LM, the relative contribution of the
approximate Hessian and the identity matrix is weighted by a single scalar
that is changing over iterations with its value carried over from one itera-
tion to the next. Given an optimization problem over a set of parameters
Θ, LM computes the parameter update ∆Θ as the solution of the system
(JT J + λdiag(JT J))∆Θ = JTR, where J is the Jacobian and R are the current
residual values. It is interesting to note that several popular optimizers,
including ADAGRAD [77] and Adam [180], also carry over information
about previous iteration(s), in this case to help control the learning rate for
each parameter.

Inspired by the success of these algorithms, we aim at constructing
a novel neural optimizer that (i) is easily applicable to different fitting
problems, (ii) can run at interactive rates without requiring significant
effort, (iii) does not require hand-crafted priors. (iv) carries over information
about previous iterations of the solve, (v) controls the learning rate of
each parameter independently, (vi) for robustness and convergence speed,
combines updates from gradient descent and from a method capable of
very quickly reducing the fitting energy. Note that the Learned Gradient
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Algorithm 1 Neural fitting

Require: Input data D
Θ0 = Φ (D)
h0 = Φh (D)
while not converged do

∆Θn, hn ← f ([gn−1, Θn−1], D, hn−1)
Θn ← Θn−1 + u (∆Θn, gn−1, Θn−1)

end while

Descent (LGD) proposed in [324] achieves (a), (b), and (c), but does not
consider (d), (e), and (f). As demonstrated experimentally in Sec. 6.4, each
of these additional properties leads to improved results compared to [324],
and the best results are achieved when combined together.

Our proposed neural fitter estimates the values of the parameters Θ by
iteratively updating an initial estimate Θ0, see Alg. 1. While the initial
estimate Θ0 obtained from a deep neural network Φ might be sufficiently
accurate for some applications, we will show that a careful construction of
the update rule (u(.) in Alg. 1) leads to significant improvements after only
a few iterations. It is important to note that we do not focus on building the
best possible initializer Φ for the fitting tasks at hand, which is the focus of
e.g. VIBE [182] and SPIN [187]. That being said, note that these regressors
could be leveraged to provide Θ0 from Alg. 1. h0 and hn are the hidden
states of the optimization process. At the n-th iteration in the loop of Alg. 1,
we use a neural network f to predict ∆Θn, and then apply the following
update rule:

u(∆Θn, gn−1, Θn−1) = λ∆Θn + (−γgn−1) (6.1)

λ, γ = fλ,γ(R(Θn−1), R(Θn−1 + ∆Θn)), λ, γ ∈ R|Θ| (6.2)

Note that LGD [324] is a special case of Eq. (6.1), with λ = 1, γ = 0, and
with no knowledge preserved across fitting iterations. gn is the gradient of
the target data term LD w.r.t. to the problem parameters: gn = ∇LD.

The proposed neural fitter satisfies the requirements (a), (b) and (c) in
a similar fashion to LGD [324]. In the following, we describe how the
properties (d), (e), and (f) outlined earlier in this section are satisfied.
(d): keeping track of past iterations.: The functions f , fλ,γ are implemented
with a Gated Recurrent Unit (GRU) [52]. Previous methods only store past
parameter values and the total loss [324]. Thanks to the GRU modules, our
model can learn how to best incorporate past and current information.
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(e): independent learning rate.: When fitting face or body models to data,
the variables being optimized over are of different nature. For instance,
rotations might be expressed in Euler angles while translation in meters.
Since each of these parameter has a different scale and / or unit, it is useful
to have per-parameter step size values. Here, we propose to predict vectors
λ and γ independently to scale the relative contribution of ∆Θn and gn
to the update applied to each entry of Θn. It is interesting to note that
fλ,γ, having knowledge about the current value of residuals at Θn and
the residual at Θn + ∆Θn, effectively makes use of an estimate of the step
direction before setting a step size that is analogous to how line-search
operates. Motivated by this observation we tried a few learned versions of
line search which yielded similar or inferior results to what we propose
here. The alternatives we tried are described in Sec. E.2.
(f): combining gradient descent and network updates.: LM interpolates
between Gradient Descent (GD) and Gauss-Newton (GN) using an iteration-
dependent scalar. LM combines the benefits of both approaches, namely
fast convergence near the minimum like GN and large descent steps away
from the minimum like GD. Here, we replace the GN direction, which is
often prohibitive to compute, with a network-predicted update, described
in Eq. (6.1). The neural optimizer should learn the optimal descent direction
and the relative weights to minimize the data term in as few steps as
possible. In Sec. E.2 we provide alternative combinations, e.g. via convex
combination, which yielded inferior results in our experiments.

6.3.2 Human Body Model and Fitting Tasks

The 3D joints, J(β), of a kinematic skeleton are computed from the shape
parameters. The pose parameters θ ∈ RJ×D+3 contain the parent-relative
rotations of each joint and the root translation, where D is the dimension
of the rotation representation and J is the number of skeleton joints. We
represent rotations using the 6D rotation parameterization of Zhou et
al. [422], thus θ ∈ RJ×6+3. The world transformation Tj(θ) ∈ SE(3) of each
joint j is computed by following the transformations of its parents in the
kinematic tree: Tj(θ) = Tp(j)(θ) ∗ T

(
θj, Jj(β)

)
, where p(j) is the index of

the parent of joint j and T
(
θj, Jj(β)

)
is the rigid transformation of joint j

relative to its parent. In the following sections, variables with a hat denote
observed quantities.

We focus on two 3D human body estimation problems: 1) fitting a body
model [222] to 2D keypoints and 2) inferring the body, including hand
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Figure 6.2: Left to right: 1) Input 6-DOF transformations TH,TL,TR and fingertip
positions PL

i=1,...5, PR
i=1,...5, given by the head-mounted device, 2) ground-truth mesh,

3) half-space visibility, everything behind the headset is not visible.

articulation [293], from head and hand signals returned by AR/VR devices,
shown in Fig. 6.2. The first is by now a standard problem in the Computer
Vision community. The second, which uses only head and hand signals in
the AR/VR scenario, is a significantly harder task which requires strong
priors, in particular to produce plausible results for the lower body and
hands. The design of such priors is not trivial, requires expert knowledge
and a significant investment of time.

2D keypoint fitting: We follow the setup of Song et al. [324], computing
the projection of the 3D SMPL joints J with a weak-perspective camera
Πo with scale s ∈ R, translation t ∈ R2: j = Πo(J(θ, β), s, t). Our goal is
to estimate SMPL and camera parameters ΘB = {θ, β}, KB = {s, t}, such
that the projected joints j match the detected keypoints DB = {ĵ}, e.g. from
OpenPose [43].

Fitting SMPL+H to AR/VR device signals: We make the following
assumptions: (i) the device head tracking system provides a 6-DOF trans-
formation T̂H, that contains the position and orientation of the headset in the
world coordinate frame. (ii) the device hand tracking system gives us the
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orientation and position of the left and right wrist, T̂L, T̂R ∈ SE(3), and the
positions of the fingertips P̂L

1,...,5, P̂R
1,...,5 ∈ R3 in the world coordinate frame,

if and when they are in the field of view (FOV) of the HMD. In order to
estimate the SMPL+H parameters that best fit the above observations, we
compute the estimated headset position and orientation from the SMPL+H
world transformations as TH(Θ) = THMDTjH(Θ), where jH is the index of
the head joint of SMPL+H. THMD is a fixed transform from the SMPL+H
head joint to the headset, obtained from an offline calibration phase.

Visibility is represented by vL, vR ∈ {0, 1} for the left and right hand
respectively. We examine two scenarios: (i) full visibility, where the hands
are always visible, (ii) half-space visibility, where only the area in front of
the HMD is visible. Specifically, we transform the points into the coordinate
frame of the headset, using TH. All points with z ≥ 0 are behind the headset
and thus invisible. Figure 6.2 right visualizes the plane that defines what is
visible or not.

To sum up, the sensor data are: DHMD = {T̂H, T̂L, T̂R, P̂L
i=1,...,5, P̂R

i=1,...,5,
vL, vR}. The goal is to estimate the parameters ΘHMD = {θ} ∈ R315, which
contain the J = 52× 6 joint rotation and 3 translation parameters, that best
fit DHMD. Note that we assume we are given body shape β from a separate
enrollment step, only for the HMD fitting problem.

6.3.3 Human Face Model and Fitting Task

We represent the human face using the parametric face model proposed
by Wood et al. [377]. It is a blendshape model [79], with V = 7667 ver-
tices, 4 skeleton joints (head, neck and two eyes), with their rotations and
translations denoted with θ, identity β ∈ R256 and expression ψ ∈ R233

blendshapes. The deformed face mesh is obtained with standard linear
blend skinning.

For face fitting, we select a set of mesh vertices as the face landmarks
P(θ, ψ, β) ∈ RP×3, P = 669 (see Fig. 6.3 right). The input data are the
corresponding 2D face landmarks p̂ ∈ RP × 2, detected using the landmark
neural network proposed by Wood et al. [377].

For this task, our goal is to estimate translation, joint rotations, expres-
sion and identity coefficients ΘF = {θ, ψ, β} ∈ R516 that best fit the 2D
landmarks DF = p̂. We assume we are dealing with calibrated cameras
and thus have access to the camera intrinsics K. Πp(P ; K) is the perspective
camera projection function used to project the 3D landmarks P onto the
image plane.
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Figure 6.3: Blue: The face model template of Wood et al. [377]. White: 669 dense
landmarks.

6.3.4 Data Terms

The data term is a function LD(Θ; D) that measures the discrepancy be-
tween the observed inputs D and the parametric model evaluated at the
estimated parameters Θ.

At the n-th iteration of the fitting process, we compute both (i) the array
R(Θn) that contains all the corresponding residuals of the data term LD for
the current set of parameters Θn, and (ii) the gradient gn = ∇LD(Θn).

Let JK be any metric appropriate for SE(3) [75] and ∥∥ρ a robust norm [26].
To compute residuals, we use the Frobenius norm for JK and ∥∥ρ. Note that
any other norm choice can be made compatible with LM [400].

Body fitting to 2D keypoints: We employ the re-projection error between
the detected joints and those estimated from the model as the data term:

LD(ΘB; DB) = ∥ĵ−Πo (J(θ, β), s, t)∥ρ (6.3)

Here J(ΘB) denotes the “posed” joints.
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Body fitting to HMD signals: We measure the discrepancy between the
observed data DHMD and the estimated model parameters ΘHMD with the
following data term:

LD(ΘHMD; DHMD) = JT̂H,TH(ΘHMD)K+

∑
w∈L,R

vw

(
JT̂w,Tw(ΘHMD)K+

5

∑
i=1
∥P̂w

i − Pw
i (ΘHMD)∥ρ

)
(6.4)

Face fitting to 2D landmarks: we use the landmark re-projection error as
our data term:

LD(ΘF; DF) = ∥ p̂−Πp

(
P(ΘF); KF

)
∥ρ (6.5)

6.3.5 Training Details

Training losses: We train our learned fitter using a combination of model
parameter and mesh losses. Their precise formulation can be found in the
Sec. E.5.2.

Model structure: Unless otherwise specified, f , fλ,γ (in Alg. 1, Eq. (6.2))
use a stack of two GRUs with 1024 units each. The initialization Φ, Φh
in Alg. 1 are MLPs with two layers of 256 units, ReLU [254] and Batch
Normalization [149].

Datasets: For the body fitting tasks, we use AMASS [232] to train and test
our fitters. When fitting SMPL to 2D keypoints, we use 3DPW’s [235] test set
to evaluate the learned fitter’s accuracy, using the detected OpenPose [43]
keypoints as the target. The face fitter is trained and evaluated on synthetic
data. Please see Sec. E.5.3 for more details on the datasets.

6.4 experiments

6.4.1 Metrics

Metrics with a PA prefix are computed after undoing rotation, scale and
translation, i.e. Procrustes alignment. Variables with a tilde are ground-truth
values.

Vertex-to-Vertex (V2V): As we know the correspondence between ground-
truth M̃ and estimated vertices M, we are able to compute the mean per-
vertex error: V2V(M̃, M) = 1

V ∑V
i=1
∥∥M̃i −Mi

∥∥2
2. For SMPL+H, in addition

to the full mesh error (FB), we report error values for the head (H) and
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Method Type Image 2D keypoints Part segmentation PA-MPJPE

SMPLify [34] O ✗ ✓ ✗ 106.1

SCOPE [82] O ✗ ✓ ✗ 68.0

SPIN [187] R ✓ ✗ ✗ 59.6

VIBE [182] R ✓ ✗ ✗ 55.9

Neural Descent [402] R+O ✓ ✓ ✓ 57.5

LGD [324] R+O ✗ ✓ ✗ 55.9

Ours, LGD + Eq. (6.1) R+O ✗ ✓ ✗ 53.9

Ours (full) R+O ✗ ✓ ✗ 52.2

Table 6.1: Using 3DPW [235] to compare different approaches that estimate SMPL
from images, 2D keypoints and part segmentation masks. Replacing LGD’s [324]
update rule with ours leads to a 2 mm PA-MPJPE improvement. Our full system,
that uses GRUs, leads to a further 1.6 mm improvement. “O/R” denotes Optimiza-
tion/Regression.

hands (L, R). A visualization of the selected parts is included in Fig. E.5.
The 3D per-joint error (MPJPE) is equal to: MPJPE(J̃, J) = 1

J ∑J
i=1
∥∥J̃i − Ji

∥∥2
2.

Ground penetration (GrPe.): We report the average distance to the
ground plane for all vertices below ground [399]:

GrPe.(M) =
1
|S| ∑

n∈S
|dgnd(Mi)|

dgnd(Mi) = Mi · ngnd

S = {i | dgnd(Mi) < 0}.

(6.6)

Face landmark error (LdmkErr): We report the mean distance between
estimated and ground-truth 3D landmarks:

LdmkErr(P̃ ,P) = 1
P

P

∑
i=1

∥∥P̃i −Pi
∥∥2

2 . (6.7)

6.4.2 Quantitative Evaluation

Fitting the body to 2D keypoints: We compare our proposed update
rule with existing regressors, classic and learned optimization methods on
3DPW [235]. For a fairer comparison with Song et al. [324], we train two
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Figure 6.4: The input RGB image and the SMPL body predicted by our fitter.
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Vertex-to-Vertex (mm) ↓ MPJPE GrPe.

Method Full body Head L / R hand (mm) ↓ (mm) ↓
F H F H F H F H F H

L-BFGS, GMM 73.1 116.2 2.9 3.4 3.2 / 3.0 5.6 / 5.3 49.7 137.26 70.8 74.0

L-BFGS, GMM, Tempo. 72.6 113.3 2.9 3.4 3.3 / 3.1 6.8 / 6.5 49.4 132.1 70.7 73.5

L-BFGS, VAE Enc. 76.1 119.3 3.9 4.1 5.3 / 4.7 8.7 / 7.6 52.6 140.5 63.6 66.7

Dittadi et al. [75] N/A N/A N/A 43.3 N/A N/A

Ours Φ, (N = 0) 44.2 69.7 19.1 22.7 27.8 / 25.9 32.1 / 29.9 38.9 84.9 16.1 20.1

Ours (N = 5) 26.1 49.9 2.2 3.2 3.0 / 3.3 3.1 / 3.7 18.1 62.1 12.5 15.5

Table 6.2: Fitting SMPL+H to simulated sequences of HMD data. Our proposed
fitter outperforms the classical optimization baselines (L-BFGS prefix) on the full
body and ground penetration metrics, with similar or better performance on the
part metrics, and the regressor baselines (the VAE predictor [75] and the regressor
Φ), on all metrics. “F/H” denotes full / half-plane visibility.

versions of our proposed fitter, one where we change the update rule of
LGD with Eq. (6.1), and our full system which also has network architecture
changes. Table 6.1 shows that just by changing the update rule (Ours, LGD
+ Eq. (6.1)), we outperform all baselines. Figure 6.4 contains qualitative
results of our method on images from the 3DPW test set.

Fitting the body to HMD data: In Tab. 6.2, we compare our proposed
learned optimizer with a standard optimization pipeline, a variant of
SMPLify [34, 270] adapted to the HMD fitting task (first 3 rows), and
two neural network regressors (a VAE predictor [75] in the 4th row and
our initializer Φ of Alg. 1 in the 5th row), on the task of fitting SMPL+H
to sparse HMD signals, described in Sec. 6.3.2. The optimization baseline
minimizes the energy with data term (LD in Equation (6.4)), gravity term
LG , prior term Lθ

prior, without and with temporal term LT (first and second
row of Tab. 6.2) to estimate the parameters Θ1,...,T of a sequence of length T:

LO(ΘHMD) = LD(ΘHMD; DHMD) + LG + Lθ
prior + LT

LG(ΘHMD) = 1−
Tpelvis(1, : 3) · u∥∥∥Tpelvis(1, : 3)

∥∥∥2

2
∥u∥2

2

, u = (0, 1, 0)

LT(ΘHMD) =
T−1

∑
t=1

JTt+1(Θ
HMD
t+1 )− Tt(Θ

HMD
t )K

(6.8)
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Figure 6.5: Errors per iteration when fitting SMPL+H to HMD data for the half-
space visibility scenario, see Fig. E.2 for full visibility. Left to right: 1) full body
vertex and joint errors, 2) head, left and right hand V2V errors and 3) vertex and
joint ground distance, computed on the set of points below ground.

We use two different pose priors, a GMM [34] and a VAE encoder E(∗) [270]:

Lθ
GMM = −min

j
log
(
wjN (θ; µθ,j, Σθ,j)

)
(6.9)

Lθ
VAE = Neg. Log-Likelihood(N (E(θ), I)) (6.10)

We minimize the loss above using L-BFGS [258] for 120 iterations on
the test split of the MoCap data. We choose L-BFGS instead of Levenberg-
Marquardt, since PyTorch currently lacks the feature to efficiently compute
Jacobians, without having to resort to multiple backward passes for deriva-
tive computations. We report the results for both full and half-space visibil-
ity in Tab. 6.2 using the metrics of Section 6.4.1. Our method outperforms
the baselines in terms of full-body and penetration metrics, and shows com-
petitive performance w.r.t. to the part metrics. Regression-only methods [75]
cannot tightly fit the data, due to the lack of a feedback mechanism.

Runtime: Our method (PyTorch) runs at 150 ms per frame on a P100

GPU, while the baseline L-BFGS method (PyTorch) above requires 520 ms,
on the same hardware. We are aware that a highly optimized real-time
version of the latter exists and runs at 0.8 ms per frame, performing at most
3 LM iterations, but it requires investing significant effort into a problem
specific C++ codebase.

Fig. 6.5 contains the metrics per iteration of our method, averaged across
the entire test dataset. It shows that our learned fitter is able to aggressively
optimize the target data term and converge quickly.

Ablation study: We perform all our ablations on the problem of fitting
SMPL+H to HMD signals, using the half-space visibility setting, see Fig. 6.2.
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Weights V2V (mm) ↓ MPJPE GrPe.

FB H L / R (mm) ↓ (mm)↓

Shared 52.3 3.5 3.6 / 3.7 64.1 18.2

Per-step 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 6.3: Using per-step network
weights reduces head and ground
penetration errors, albeit at an N-
folder parameter increase.

Network V2V (mm) ↓ MPJPE GrPe.

Structure FB H L / R (mm) ↓ (mm)↓

ResNet50 65.3 6.8 7.3 / 7.6 73.1 16.2

GRU (1024) 53.6 3.7 3.4 / 4.0 66.1 15.1

GRU (1024, 1024) 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 6.4: GRU vs a residual feed-
forward network [130, 326]. GRU’s
memory makes it more effective. Mul-
tiple layers bring further benefits, but
increase runtime.

Update V2V (mm) ↓ MPJPE GrPe.

Rule FB H L / R (mm) ↓ (mm)↓

+∆Θn 53.8 14.7 7.8 / 7.9 66.3 15.8

+Eq. (6.1) 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 6.5: Comparison of our update
rule (Eq. (6.1)) with the pure network
update ∆Θn. Our proposed combina-
tion improves the results for all met-
rics.

Learning V2V (mm) ↓ MPJPE GrPe.

rate γ FB H L / R (mm) ↓ (mm)↓

1e-4 51.9 3.5 3.8 / 4.6 64.2 15.5

Learned 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 6.6: Learning to predict γ is
better than a constant, with perfor-
mance degrading gracefully, provid-
ing an option for a lower computa-
tional cost.

Unless otherwise stated, all numbers are reported after running the initial
regressor and the learned fitter for 5 iterations.

We first compare two variants of the fitter, one with shared and the other
with separate network weights per optimization step. Table 6.3 shows that
the latter can help reduce the errors, at the cost of an N-fold increase in
memory.

Secondly, we investigate the effect of the type and structure of the net-
work, replacing the GRU with a feed-forward network with skip connec-
tions, i.e., ResNet [130, 326]. We also train a version of our fitter with a
single GRU with 1024 units. Table 6.4 shows that the GRU is better suited
to this type of problem, thanks to its internal memory.

Thirdly, we compare the update rule of Eq. (6.1) with a learned fitter
that only uses the network update, i.e. γ = 0, λ = 1 in Eq. (6.1). This is
an instantiation of LGD [324], albeit with a different network and task.
Table 6.5 shows that the proposed weighted combination is better than the
pure network update.

Fourthly, we investigate whether we need to learn the step size γ or if
a constant value is enough. Table 6.6 shows that performance gracefully
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V2V (mm) ↓ LdmkErr

Face Head (mm) ↓
Method - PA - PA - PA

LM 34.4 3.7 33.8 5.3 33.8 3.4

Ours 7.9 3.5 8.5 4.1 8.0 3.7

Table 6.7: Face fitting to 2D landmarks.

degrades when using a constant learning value. Therefore, it is an option
for decreasing the computational cost, without a significant performance
drop.

Finally, we present some qualitative results in Fig. 6.6. Notice how the
learned fitter corrects the head pose and hand articulation of the initial
predictions.

Face fitting to 2D landmarks: We compare our proposed learned opti-
mizer with a C++ production grade solution that uses LM to solve the face
fitting problem described in Sec. 6.3.3. Given the per-image 2D landmarks as
input, the optimization baseline minimizes the energy with data term (LD

in Eq. (6.5)) and a simple regularization term to estimate ΘF = {θ, ψ, β}:

LO(ΘF) = LD(ΘF; DF) + w ∗
∥∥∥ΘF

∥∥∥2

2
(6.11)

w contains the different regularization weights for θ, ψ, β, which are tuned
manually for the best baseline result.

The quantitative comparison in Tab. 6.7 shows that our proposed fitter
outperforms the LM baseline on almost all metrics. The large value in
absolute errors (“-” columns) is due to the wrong estimation of the depth
of the mesh. After alignment (PA columns), the gap is much smaller. See
Fig. 6.7 for a qualitative comparison.

Runtime: For face fitting, the baseline optimization is in C++ and thus
for a fair comparison, we only compare the time it takes to compute the
parameter update given the residuals and Jacobians (per-iteration). Com-
puting the values of the learned parameter update (ours, using PyTorch)
takes 12 ms on a P100 GPU, while computing the LM update (baseline,
C++) requires 34.7 ms (504 free variables). Note that the LM update only
requires 0.8 ms on a laptop CPU when optimizing over 100 free variables.
The difference is due to the cubic complexity of LM w.r.t. the number of
free variables of the problem.
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Figure 6.6: Estimates in yellow, ground-truth in blue, best viewed in color. From left
to right: 1) Initial Φ output, 2) iteration N = 5 of our fitter, 3) ground-truth overlay.
Our learned optimizer successfully fits the target data and produces plausible poses
for the full 3D body. Points that are greyed out are outside of the field of view, e.g.
the hands in the second row, and thus not perfectly fit.

6.4.3 Discussion

If we apply the proposed method to a sequence of data, we will get plau-
sible per-frame results, but the overall motion will be implausible. Since
the model is trained on a per-frame basis and lacks temporal context, it
cannot learn the proper dynamics present in temporal data. Thus, limbs
in successive frames will move unnaturally, with large jumps or jitter. Fu-
ture extensions of this work should therefore explore how to best use past
frames and inputs. This could be coupled with a physics based approach,
either as part of a controller [399] or using explicit physical losses [285, 383,
413] in LD. Another interesting direction is the use of more effective param-
eterizations for the per-step weights [69, 136]. While all the problems we
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Figure 6.7: Face model [377] fitting to dense 2D landmarks 1) target 2D landmarks,
2) LM fitter, 3) ours, 4) ground-truth.

tackle here are under-constrained and could thus have multiple solutions,
the current system returns only one. Therefore, combining the proposed
system with multi-modal regressors [32, 189] is another possible extension.

Social impact: Accurate tracking is a necessary pre-requisite for the next
generation of communication and entertainment through virtual and aug-
ment reality. Learned optimizers represent a promising avenue to realize
this potential. However, it can also be used for surveillance and track-
ing of private activities of an individual, if the corresponding sensor is
compromised.
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6.5 conclusion

In this chapter, we propose a learned parameter update rule inspired from
classic optimization algorithms that outperforms the pure network update
and is competitive with standard optimization baselines. We demonstrate
the utility of our algorithm on three different problem sets, estimating the
3D body from 2D joints, from sparse HMD signals and fitting the face
to dense 2D landmarks. Learned optimizers combine the advantages of
classic optimization and regression approaches. They greatly simplify the
development process for new problems, since the parameter priors are
directly learned from the data, without manual specification and tuning,
and they run at interactive speeds, thanks to the development of specialized
software for neural network inference. Thus, we believe that our proposed
optimizer will be useful for any applications that involve generative model
fitting.
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7
S U M M A RY

7.1 contributions

The contribution of this dissertation is a set of methods that increase the
fidelity and accuracy of model-based 3D human reconstruction from images.
Specifically, in Part I we describe optimization and regression approaches
that jointly estimate 3D body pose and shape, hand articulation and facial
expression from a single image, making the reconstructed model more
expressive and realistic. Next, in Part II, we look at improving 3D shape
reconstruction, which has received much less attention than pose, from
easy-to-collect metric and semantic attributes. Last, Part III describes a
learned optimization approach for 3D full body estimation from (i) 2D
image keypoints, (ii) hand and head location and orientation, given by an
AR/VR headset and (iii) face model fitting to dense 2D landmarks.

In Chapter 2 we introduce SMPL-X, a holistic 3D model of the body,
hands, and face, and SMPLify-X, an approach that estimates SMPL-X pa-
rameters from a single image. Since this is an under-constrained problem,
we employ a set of priors to regularize the fitting process. Rather than opti-
mizing body joint rotations in axis-angle space, we optimize the latent code
of a VAE trained on a large collection of body poses, obtained from MoCap.
We encourage the L2 norm of the latent code to be close to zero, to penalize
unnatural poses. Furthermore, we detect self-collisions in the estimated
body with the help of a Bounding Volume Hierarchy (BVH) for fast queries.
To resolve the self-penetrations we formulate an energy term that assigns
larger energy values to colliding triangles. We also collect a new dataset
of images and ground-truth SMPL-X parameters, obtained by registering
SMPL-X to 3D scans, called Expressive Hands and Faces (EHF). There we
show that the joint estimation of body, hands, and face is more accurate
than separate part estimation. Qualitative and quantitative results show that
the use of an expressive model leads to more natural 3D reconstructions.

In Chapter 3 we introduce ExPose, a neural network regressor that pre-
dicts SMPL-X parameters from a single image. The use of the regressor is
motivated by SMPLify-X’s main weaknesses: (i) slow runtime and (ii) sus-
ceptibility to initialization. We can however use SMPLify-X to collect the
necessary training data for the neural network, removing invalid estimates
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with the help of human annotators. The hands and face occupy very few
pixels compared to the full body, making their estimation very hard from
the down-scaled images usually given to neural networks. We propose
to use body-driven attention to overcome this issue. We start by predicting
the 3D pose and shape of the body. The body estimate already localizes
the hands and face well enough. We then use the detected hand and face
location to extract high-resolution part crops and pass those to dedicated
part networks to refine the initial part parameters. An added benefit of this
approach is that we leverage part-only data to train and evaluate our part ex-
perts. ExPose estimates expressive 3D humans as accurately as SMPLify-X,
at a fraction of the computation cost.

ExPose’s main weakness is its naive parameter integration mechanism
that simply combines independent estimates from the body, hand, and face
experts. PIXIE, introduced in Chapter 4, instead proposes to use moderators,
neural networks that merge features from the part images weighted by
a confidence value. To improve the realism of the reconstructed bodies,
PIXIE also predicts lighting, facial albedo, and geometric details. Since body
shape is highly correlated with gender, we label images as female, male
and non-binary and train PIXIE to infer “gendered” 3D body shapes with
an appropriate shape prior. Quantitative and qualitative results prove that
PIXIE estimates more accurate and more realistic 3D bodies than prior
methods.

In Chapter 5 we investigate the problem of estimating accurate 3D body
shape from monocular RGB images. The main obstacle for training such a
regressor is the lack of 3D shape data for in-the-wild images. To overcome
this hurdle, we need to find alternate data that can be easily collected for
in-the-wild images and constrain 3D body shape. Prior work has shown
that linguistic shape attributes, e.g. “big”, “tall”, etc., and anthropometric
measurements can be used to accurately predict 3D body shape. Motivated
by these findings, we collect (i) images of fashion models with their an-
thropometric measurements and (ii) linguistic shape attributes for 3D body
meshes and the model images. Using mapping functions from attributes
and/or measurements to 3D body shape and vice-versa, we formulate
shape-aware losses and use them to train SHAPY, a neural network that
predicts 3D shape and pose parameters from an RGB image. We observe
that existing benchmarks lack ground-truth shape annotations, subject, and
clothing variation. Thus, we collect a new dataset, Human Bodies in the
Wild (HBW), that contains images of people in natural clothing and set-
tings, together with ground-truth 3D shape acquired from a body scanner.
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SHAPY significantly outperforms existing work on this challenging new
benchmark.

In Chapter 6 we revisit the problem of fitting parametric models of the
human body using learned optimization. Similar to the classical Levenberg-
Marquardt algorithm that computes the parameter update as a weighted
combination of the gradient descent and Gauss-Network directions, we pro-
pose an update rule that uses a weighted combination of gradient descent
and a network-predicted update. We apply this neural optimizer on chal-
lenging 3D human model fitting problems: (i) 3D body estimation from 2D
image landmarks, (ii) 3D body and hand estimation from a head-mounted
device and (iii) 3D face fitting from dense 2D landmarks. The proposed
method is versatile, being easy to apply to different problems, and offers a
competitive alternative to well-tuned “traditional” model fitting pipelines,
both in terms of accuracy and speed.

7.2 future work

We believe that this work opens up new and exciting avenues for future
research. First, it motivates the rest of the community to switch from
separate to joint 3D body, face and hand prediction [245, 246, 295, 381, 423].
Second, the work presented here unlocks other exciting applications, such as
(i) sign language recognition [267] and (ii) reconstruction [96], (iii) forensic
identification from body shape [345], (iv) generating perpetual motion [416],
(v) action-/text-conditioned motion [17, 276] and (vi) full-body grasping
motion [336, 378] to name only a few. Nevertheless, there remain important
open questions and issues for the problem of 3D human body and motion
modeling and reconstruction from different modalities, such as images,
videos and 3D/4D scans.

Model fidelity: All existing holistic 3D body models, i.e. SMPL-X [270],
Adam [166] and GHUM [387], represent only the surface of the body.
Skin [62, 196, 197] and eye [29, 201] appearance models are key components
for increased realism. Note that special care needs to be taken to avoid
biases to a specific subset of the population [16, 85, 177]. Therefore, we need
to move beyond indoor multi-view and light stage capture facilities [110,
168, 289], whose cost and difficulty of operation make scaling to a large
number of subjects intractable. Moving to more lightweight capture meth-
ods is necessary to resolve this issue. For example, SunStage [368], captures
the shape and appearance of a person’s head with an outdoor video in
direct sunlight. Neural Radiance Fields (NeRF) [242], which represent scene
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geometry and appearance with a single model, requiring only a few tens
of calibrated multi-view images, are another promising alternative, espe-
cially with recent advances that train these models in minutes [251, 303].
Next, SMPL-X is “naked”, i.e. it does not model clothing and hair; adding
clothing [63, 228, 301], and hair models [370] although not trivial, would sig-
nificantly increase realism. Finally, applications in medicine, biomechanics
and accurate physical simulation will require going beyond the surface [263,
270, 387] to capture [47] and model the skeleton, muscles and tissue of the
human body [61, 145, 167, 175, 208, 209].

Temporal and physical plausibility: Despite the impressive results of 3D
body estimation methods [183, 189, 203] on monocular images, reconstruc-
tion of motion sequences from RGB videos is still far from solved. Running
these methods, including temporal extensions [53, 182, 224], on sequences
produce results with high jitter, noticeable foot sliding and significant errors
in the presence of occlusions. Adding physical constraints to monocu-
lar capture methods, either as explicit energy terms for an optimization
problem [383], or by embedding our human models inside a physical simu-
lation [225, 322, 356, 399] will help us overcome these problems, unlocking
new applications such as physically stable grasp synthesis [57].

Multi-person estimation: All the work presented in this thesis deals with
a single human subject at a time, assuming that a bounding box for each
person is available. Although this is a valid assumption, given the accuracy
of modern object detectors, single-person methods still suffer when multiple
overlapping people are present in a scene [202]. More importantly, humans
are, by nature, social beings, communicating and interacting with their
fellows. Their pose, expression, and gestures depend on the actions of other
persons in their surroundings. Therefore, in order to reason about their
relations, their emotions, and their actions it is important to predict the
3D body, face, and hands of all persons in an image. Extending recent
multi-person 3D pose and shape estimation methods [156, 253, 333, 334,
405] with the hand and face estimation using the techniques described in
Chapters 2 to 4 is a promising first step. Of course, the more interesting
question is how we can use models of interaction and conversation [164,
256] to improve our 3D body, hand, face estimates.

Human-scene estimation: Last, but not least, humans, with the notable
exception of astronauts, do not float in space, but live, interact and move in
their environment. The world constrains the body and vice-versa. Knowl-
edge of the scene structure, e.g. a world model built by a SLAM system [425],
can help us improve our estimates of the 3D body’s articulation, shape, and
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location [124]. The converse is also true, i.e. body pose can help us improve
the 3D reconstruction of a scene [375, 394].

Motion and interaction generation: Perpetual motion generation [416]
is a useful tool, e.g. for animation purposes [101]. Humans however do
not just stand or wander aimlessly in their surroundings, but interact with
them to fulfill their goals. Consequently, to create virtual avatars that move
and act like humans we need models that generate realistic (i) grasps
and grasping motions [57, 336, 337], (ii) interactions with rigid [30, 123,
389, 411, 412] articulated [84, 157, 243, 382] and deformable objects [48],
(iii) action-/text-conditioned motion [276, 277, 282], e.g. tasking an avatar
to execute a cooking recipe.

7.3 conclusion

The introduction of an expressive 3D model of the human body, described
in Chapter 2, led to the creation of methods that jointly predict the 3D
body, hands, and face from a single image, presented in Chapters 2 to 4.
This has motivated the community to slowly shift from separate body [152,
169, 183, 187, 203], hand [120, 427] and face [79] prediction to holistic
body reconstruction [295, 347, 409]. The increase in expressivity has also
benefited applications, such as continuous sign language recognition [190,
267] and reconstruction [96], human-object interaction capture [143, 337]
and synthesis [336, 378], human-scene interaction capture [124, 394] and
synthesis [125, 414, 418], to name only a few. An important lesson here
is that the different body parts complement and constrain each other, e.g.
that the face and hands can be localized from the body, used by ExPose in
Chapter 3, or that the body contains useful context information for the pose
of the hand, as illustrated by PIXIE in Chapter 4.

Although the accuracy of methods that estimate 3D body poses from im-
ages has increased rapidly in the last few years, the same cannot be said for
3D shape estimation. SHAPY, presented in Chapter 5, makes a step towards
reducing this performance gap by utilizing anthropometric measurements
and easy-to-collect linguistic attributes for 3D shape supervision to predict
more accurate body shapes than existing methods. Accurate estimates of
the 3D body shape will be crucial for virtual try-on, augmented/virtual
reality, and health applications. A key takeaway from Chapter 5 is that
proxy data, which can be easily collected in large quantities, such as anthro-
pometric measurements or linguistic attributes which only provide weak
supervision 3D body shape estimation, can be an effective replacement for
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full supervision, which might be significantly harder or even impossible to
obtain.

Last, in Chapter 6 we described a learned optimization method that
combines insights from classical gradient-based optimization and direct
parameter regression. The proposed update rule follows the structure of
the Levenberg-Marquardt algorithm, computing parameter updates as a
combination of gradient descent and a higher order update predicted
by a neural network, instead of the Gauss-Newton direction in LM, and
controlling the learning rate of each variable independently. The integration
of well-known and effective structures, in this case, a constraint on the
form of the parameter update function, accelerates training and improves
the final performance of the model. The proposed model is application-
agnostic and easy to apply to different problem settings, as shown in Sec. 6.4.
The effectiveness and versatility of our learned optimizer will benefit all
applications that require generative model fitting.
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A
E X P R E S S I V E B O D Y C A P T U R E : 3 D H A N D S , FA C E , A N D
B O D Y F R O M A S I N G L E I M A G E

a.1 qualitative results

Comparison of SMPL, SMPL+H & SMPL-X: In Tab. 2.1 from Sec. 2.4.2 we
present a quantitative comparison between different models with different
modeling capacities. In Fig. A.1 we present a similar comparison for SMPL
(left), SMPL+H (middle) and SMPL-X (right) for an image of the EHF
dataset. For fair comparison we fit all models with a variation of SMPLify-X
to a single RGB image. The figure reflects the same findings as Tab. 2.1, but
qualitatively; there is a clear increase in expressiveness from left to right, as
model gets richer from body-only (SMPL) to include hands (SMPL+H) or
hands and face (SMPL-X).

Holistic vs part models: In Sec. 2.4.2 and Fig. 2.4 we compare our holistic
SMPL-X model to the hand-only approach of [266] on EHF. Figure A.2
shows a similar qualitative comparison, this time on the data of [266].
To further explore the benefit of holistic reasoning, we also focus on the
head and we compare SMPL-X fitting to a head-only method by fitting
FLAME [206] to 2D keypoints similar to our method. The context of the
full body stabilizes head estimation for occlusions or non-frontal views,
see Fig. A.3. This benefit is also quantitative, where the holistic SMPL-X
improves over the head-only fitting by 17% in our EHF dataset in terms of
vertex-to-vertex error.

Failure cases: Figure A.4 shows some representative failure cases; depth
ambiguities can cause wrong estimation of torso pose or wrong ordinal
depth estimation of body parts due to the simple 2D re-projection data
term. Furthermore, occluded joints leave certain body parts unconstrained,
which currently leads to failures and could be addressed by employing a
visibility term in the objective.
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Figure A.1: Comparison of SMPL (left), SMPL+H (middle) and SMPL-X (right) on
the EHB dataset, using the male models. For fair comparison we fit all models with
a variation of SMPLify-X to a single RGB image. The results show a clear increase
in expressiveness from let to right, as model gets richer from body-only (SMPL) to
include hands (SMPL+H) or hands and face (SMPL-X).

a.2 collision penalizer

Section 2.3.4 contains the description the collision penalizer. For technical
details and visualizations the reader is redirected to [25, 356], but for the
sake of completion we include the mathematical formulation also here.

We first detect a list of colliding triangles C by employing Bounding
Volume Hierarchies (BVH) [341] and compute local conic 3D distance
fields Ψ : R3 → R+ defined by the triangles C and their normals n ∈
R3. Penetrations are then penalized by the depth of intrusion, efficiently
computed by the position in the distance field. For two colliding triangles fs
and ft intrusion is bi-directional; the vertices vt ∈ R3 of ft are the intruders
in the distance field Ψ fs of the receiver triangle fs and are penalized by
Ψ fs(vt), and vice-versa. Thus, the collision term EC is defined as

EC(θ) = ∑
( fs(θ), ft(θ))∈C

{
∑

vs∈ fs

∥ −Ψ ft(vs)ns∥2 + ∑
vt∈ ft

∥ −Ψ fs(vt)nt∥2
}

. (A.1)

119



Figure A.2: Comparison of the hands-only approach of [266] (middle row) against
SMPLify-X with the male SMPL-X (bottom row). Both approaches depend on
OpenPose [43]. In case of good 2D detections both perform well (left group). In case
of noisy detections (right group) fitting a holistic model is more robust.

For the case where ft is the intruder and fs is the receiver (similarly for
the opposite case) the cone for the distance field Ψ fs is defined as

Ψ fs(vt) =

 |(1−Φ(vt))Υ(n fs · (vt − o fs))|2 Φ(vt) < 1

0 Φ(vt) ≥ 1
(A.2)

The term

Φ(vt) =
∥(vt − o fs)− (n fs · (vt − o fs))n fs∥
− r fs

σ (n fs · (vt − o fs)) + r fs

(A.3)
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Figure A.3: Fitting SMPL-X (right) versus FLAME (middle). For minimal occlusions
and frontal views (top) both methods perform well. For moderate (middle) or
extreme (bottom) occlusions the body provides crucial context and improves fitting
(bottom: missing FLAME model indicates a complete fitting failure).

projects the vertex vt onto the axis of the cone defined by the triangle
normal n fs and going through the circumcenter o fs . It then measures the
distance to it, scaled by the radius of the cone at this point. If Φ(v) < 1 the
vertex is inside the cone and if Φ(v) = 0 the vertex is on the axis. The term

Υ(x) =


−x + 1− σ x ≤ −σ

− 1−2σ
4σ2 x2 − 1

2σ x + 1
4 (3− 2σ) x ∈ (−σ,+σ)

0 x ≥ +σ

(A.4)

measures how far the projected point is from the circumcenter to define
the intensity of penalization. For Υ(x) < 0 the projected point is behind
the triangle. For x ∈ (−σ,+σ) the penalizer is quadratic, while for x > |σ|
it becomes linear. The parameter σ also defines the field of view of the
cone. In contrast to [25, 356] that use mm unit and σ = 0.5, we use m unit
and σ = 0.0001. For the resolution of our meshes, we empirically find
that this value allows for both penalizing penetrations, as well as for not
over-penalizing in case of self-contact, e.g. arm resting on knee.
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Figure A.4: Failure cases for SMPLify-X with the female SMPL-X for expressive
RGB images similar to the ones in Figs. 2.1 and 2.2. In the left case, 2D keypoints are
reasonable, but due to depth ambiguities the torso pose is wrong, while the head
shape is under-estimated. In the right case, the arms and hands are occluded and
due to lack of constraints the arm and hand pose is wrong. The ordinal depth for
feet is estimated wrongly, while similarly to the left case the torso pose and head
shape are not estimated correctly. Left: Input RGB image. Middle : Intermediate 2D
keypoints from OpenPose. Right: SMPL-X fittings overlaid on the RGB image.

As seen in Fig. A.5, for certain parts of the body, like the eyes, toes,
armpits and crotch, as well as neighboring parts in the kinematic chain,
there is either always or frequently self-contact. For simplicity, since the
model does not model deformations due to contact, we simply ignore
collisions for neighboring parts in these areas. Our empirical observations
suggest that collision detection for the other parts resolves most penetrations
and helps prevent physically implausible poses. Figure A.6 shows the effect
of the collision penalizer, by including or excluding it from optimization,
and depicts representative success and failure cases.

For computational efficiency, we developed a custom PyTorch wrapper
operator for our CUDA kernel based on the highly parallelized implemen-
tation of BVH [172].

a.3 optimization

In Sec. 2.3.6 we present the main information about optimizing our objective
function, while in the following we present omitted details.
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Figure A.5: For certain parts of the body, like the eyes, toes, armpits and crotch, as
well as neighboring parts in the kinematic chain, there is either always or frequently
self-contact. The triangles for which collisions are detected are highlighted with
red (left, middle). Since the model does not model deformations due to contact, for
simplicity we just ignore collisions for these areas (right).

To keep optimization tractable, we use a PyTorch implementation and
the Limited-memory BFGS optimizer (L-BFGS) [258] with strong Wolfe
line search. We use a learning rate of 1.0 and 30 maximum iterations. For
the annealing scheme presented in Sec. 2.3.6 we take the following three
steps. We start with high regularization to mainly refine the global body
pose, (γb = 1, γh = 0, γ f = 0) and gradually increase the influence of hand
keypoints to refine the pose of the arms (γb = 1, γh = 0.1, γ f = 0). After
converging to a better pose estimate, we increase the influence of both
hands and facial keypoints to capture expressivity (γb = 1, γh = 2, γ f = 2).
Throughout the above steps the weights λα, λβ, λψ in the objective function
E start with high regularization that progressively lowers to allow for better
fitting. The only exception is λC that progressively increases while the
influence of hands and facial keypoints gets stronger in EJ , thus bigger
pose changes and more collisions are expected.

Regarding the weights of the optimization, they are set empirically and
the exact parameters for each stage of the optimization will be released
with our code. For more intuition we performed sensitivity analysis by
perturbing each weight λ separately by up to ±25%. This resulted to relative
changes smaller than 6% in the vertex-to-vertex error metric, meaning that
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Figure A.6: Effect of the collision penalizer. The colliding triangles are highlighted
to show penetrations at the end of optimization with SMPLify-X without (middle)
and with (right) the collision term in the objective function. The top row shows
a successful case, were optimization resolves most collisions and converges in a
physically plausible pose that reflects the input image. The bottom row shows a
failure case, for which arm crossing causes a lot of collisions due to self-touch. The
final pose (right) is still physically plausible, but optimization gets trapped in a
local minima and the pose does not reflect the input image.

our approach is robust for significant weight ranges and not sensitive to
fine-tuning. The detailed results are presented in Fig. A.7.

a.4 quantitative evaluation on “total capture”

In Sec. 2.4.1 we present a curated dataset called Expressive hands and faces
dataset (EHF) with ground-truth shape for bodies, hands and faces together.

Since the most relevant model is Frank [166], we also use the “Total
Capture” dataset [66] of the authors, focusing on the “PtCloudDB” part that
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Figure A.7: Sensitivity of the weights for the different terms of the optimization.
Each weight λ is perturbed separately up to ±25%. The relative changes in the
vertex-to-vertex error are smaller than 6%, indicating that our approach is robust
for significant weight ranges and not sensitive to fine-tuning.

includes pseudo ground-truth for all body, face and hands. This pseudo
ground-truth is created with triangulated 3D joint detection from multi-
view with OpenPose [43]. We curate and pick 200 images, according to the
degree of visibility of the body in the image, interesting hand poses and
facial expressions. In the following, we refer to this data as “total hands and
faces” (THF) dataset. Figure A.8 shows qualitative results on part of THF.
For each group of images the top row shows a reference RGB image, the
middle row shows SMPLify-X results using pseudo ground-truth OpenPose
keypoints (projected on 2D for use by our method), while the bottom row
shows SMPLify-X results using 2D OpenPose keypoints estimated with [43].
Quantitative results for this dataset are reported in Tab. A.1.

a.5 quantitative evaluation on human3 .6m

Table 2.1 demonstrates that evaluating the reconstruction accuracy using 3D
body joints is not representative of the accuracy and the detail of a method’s
reconstruction. However, many approaches do evaluate quantitatively based
on 3D body joints metrics, so here we compare our results with SMPLify [34]
to demonstrate that our approach is not only more natural, expressive and
detailed, but the results are also more accurate in the common metrics.
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Figure A.8: Qualitative results on some of the data of the “total capture” dataset [66],
focusing on the “PtCloudDB” part that includes pseudo ground-truth for all body,
face and hands. We curate and pick 200 images, according to degree of body
coverage in the image and interesting hand poses and facial expressions. We refer
to this data as “total hands and faces” dataset (THF). Top row: Reference RGB image.
Middle row: SMPLify-X results using pseudo ground-truth OpenPose keypoints
(3D keypoints of [66] estimated from multi-view and projected on 2D). Bottom
row: SMPLify-X results using 2D OpenPose keypoints estimated with [43]. Gray
color depicts the gender-specific model for confident gender detections. Blue is the
gender-neutral model that is used when the gender classifier is uncertain.
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SMPLify-X using

Error Joints Alignment Joints GT 2D pred 2D

Body Body 92.6 117.5

Body+H+F Body 101.2 136.2

Body+H+F Body+H+F 71.2 93.4

Table A.1: Quantitative results on the selected frames from CMU Panoptic Studio,
using SMPLify-X on the 2D re-projection of the ground-truth 3D joints, and the 2D
joints detected by OpenPose respectively. The numbers are mean 3D joint errors
after Procrustes alignment. First, we evaluate the error on the body-only keypoints
after Procrustes alignment with the ground-truth body-only keypoints (row 1).
Then, we consider the same alignment using body-only keypoints, but we evaluate
the joint error across all the body+hands+face keypoints (row 2). Finally, we align
the prediction using all body+hands+face keypoints and we report the mean error
across all of them (row 3).

Method Mean (mm) Median (mm)

SMPLify [34] 82.3 69.3

SMPLify-X 75.9 60.8

Table A.2: Quantitative results on the Human3.6M dataset [150]. The numbers are
mean 3D joint errors after Procrustes alignment. We use the evaluation protocol of
SMPLify [34].

In Tab. A.2 we present our results using the Human3.6M [150] dataset.
We follow the same protocol as SMPLify [34] and we report results after
Procrustes alignment with the ground-truth 3D pose. Even though there are
several factors that improve our approach over SMPLify and this experiment
does not say which is more important (we direct the reader to the ablative
study in Tab. 2.2 for this), we still outperform the original SMPLify using
this crude metric based on 3D joints.
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a.6 qualitative evaluation on mpii

In Fig. A.13 we present qualitative results on the MPII dataset [13]. For this
dataset we also include some cases with low resolution, heavily occluded
or cropped people.

a.7 model

Section 2.3.1 contains the description of the SMPL-X model. The model
shape space is trained on the CAESAR database [290]. In Fig. A.9a we
present the percentage of explained variance as a function of the number of
PCA components used. All models explain more than 95% of the variance
with 10 principle components.

We further evaluate the model on a held out set of 180 alignments of male
and female subjects in different poses. The male model is evaluated on the
male alignments, the female model is evaluated on the female alignments,
while the gender neutral is evaluated on both male and female alignments.
We report the model alignment vertex-to-vertex (v2v) mean absolute error as
a function of the number of principle components used, shown in Fig. A.9b.

a.8 vposer

In Sec. 2.3.3 we introduce a new parametrization of the human pose and a
prior on this parameterization, also referred to as VPoser. In this section,
we present further details on the data preparation and implementation.

a.8.1 Data preparation

We use SMPL body pose parameters extracted with [221, 232] from human
motion sequences of CMU [60], Human3.6M [150], and PosePrior [5] as
our dataset. Subsequently, we hold out parameters for Subjects 9 and 11 of
Human3.6M as our test set. We randomly select 5% of the training set as our
validation set and use that to make snapshots of the model with minimum
validation loss. We choose matrix rotations for our pose parameterization.
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(a) Cumulative relative variance of the CAESAR dataset ex-
plained as a function of the number of shape coefficients for
three SMPL-X models: male, female, gender neutral model.

(b) Evaluating SMPL-X generalization on a held out test set of male
and female 3D alignments.

Figure A.9: SMPL-X evaluation on held-out test set.
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a.8.2 Implementation details

For implementation we use TensorFlow [2] and later port the trained model
and weights to PyTorch [268]. Figure A.10 shows the network architecture
during training and test time. We use only fully-connected layers, with
LReLU [230] non-linearity and keep the encoder and decoder symmetric.
The encoder has two dense layers with 512 units each, and then one dense
layer for mean and another for variance of the VAE’s posterior Normal
distribution. The decoder weights have the same shape as the encoder, only
in reverse order. We use the ADAM solver [180], and update the weights
of the network to minimize the loss defined in Eq. (2.6). We empirically
choose the values for loss weights as: c1 = 0.005, c2 = 1.0− c2, c3 = 1.0, c4 =
1.0, c5 = 0.0005. We train for 60 epochs for each of the following learning
rates: [5e−4, 1e−4, 5e−5].

After training, the latent space describes a manifold of physically plau-
sible human body poses, that can be used for efficient 2D-to-3D lifting.
Figure A.12 shows a number of random samples drawn from the latent
space of the model.

a.9 gender classifier

Figure A.11 shows some qualitative results of the gender classifier on the
test set.

a.9.1 Training data

For training data we employ the LSP [160], LSP-extended [161], MPII [13],
COCO [215], LIP [212] datasets, respecting their original train and test splits.
To curate our data for gender annotations we collect tight crops around
persons and keep only the ones for which there is at least one visible joint
with high confidence for the head, torso and for each limb. We further reject
crops with size smaller than 200× 200 pixels. The gathered samples are
annotated with gender labels using Amazon Mechanical Turk. Each image
is annotated by two Turkers and we keep only the ones with consistent
labels.
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a.9.2 Implementation details

For implementation we use Keras [54] with TensorFlow [2] backend. We
use a pretrained ResNet18 [130] for feature extraction and append fully-
connected layers for our classifier. We employ a cross entropy loss, aug-
mented with an L2 norm on the weights. Each data sample is resized to
224× 224 pixels to be compatible with the ResNet18 [130] architecture. We
start by training the final fully-connected layers for two epochs with each
of the following learning rate values [1e−3, 1e−4, 1e−5, 1e−6]. Afterwards,
the entire network is finetuned end-to-end for two epochs using these
learning rates [5e−5, 1e−5, 1e−6, 1e−7]. Optimization is performed using
ADAM [180].
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Dense - 207 × 512
LReLU - 0.2
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µ(R)
Dense - 512 × 32

Z ∼ N (µ(R),Σ(R))

Dense - 32 × 512
LReLU - 0.2

Dropout - 0.25
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Dense - 512 × 207
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R̂ ∈ [−1, 1]207

Z ∼ N (0, I) ∈ R32

Dense - 32 × 512
LReLU - 0.2

Dropout - 0.25

Dense - 512 × 512
LReLU - 0.2

Dense - 512 × 207
tanh

R̂ ∈ [−1, 1]207

inv. Rodrigues

Raxis angle ∈ R69

SMPLHF

Figure A.10: VPoser model in different modes. For training the network consists of
an encoder and a decoder. For testing we use the latent code instead of the body
pose parameters, i.e. θb, of SMPL-X. By “inverse Rodrigues” we note the conversion
from a rotation matrix to an axis-angle representation for posing SMPL-X.
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Figure A.11: Gender classifier results on the test set. From left to right column:
Successful predictions, predictions discarded due to low confidence(< 0.9), failure
cases.
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Figure A.12: Random pose samples from the latent space of VPoser. We sample
from a 32 dimensional normal distribution and feed the value to the decoder of
VPoser; shown in Sec. A.7. SMPL is then posed with the decoder output, after
conversion to an axis-angle representation.
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Figure A.13: Qualitative results of SMPLify-X with SMPL-X on the MPII dataset [13].
In this figure we also include images with some heavily occluded or cropped bodies.
Gray color depicts the gender-specific model for confident gender detections. Blue
is the gender-neutral model that is used when the gender classifier is uncertain or
when cropping does not agree with the filtering criterion described in Sec. A.9.1.
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Figure A.14: Results of SMPLify-X fitting for the LSP dataset. For each group of
images we compare two body priors; the top row shows a reference RGB image, the
bottom row shows results of SMPLify with VPoser, while the middle row shows
results for which VPoser is replaced with the GMM body pose prior of SMPLify [34].
To eliminate factors of variation, for this comparison we use the gender neutral
SMPL-X model.
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B
M O N O C U L A R E X P R E S S I V E B O D Y R E G R E S S I O N
T H R O U G H B O D Y- D R I V E N AT T E N T I O N

b.1 training details

Figure B.1: Structure of the feature extractor used by the body prediction network.
The image Ib is fed to HRNet [330] to extract multi-scale feature maps. These are
then processed by extra convolutional blocks and downsampled to the same spatial
resolution. All feature maps are subsequently concatenated and fed to 5 residual
blocks [130], followed by a global average pooling operation that produces the final
feature vector Fb.

Architecture: The features Fb are extracted from the body image Ib using
the architecture of Fig. B.1. The parameters Θ = {β, θ, ψ, s, t} are predicted
by feeding the features Fb and the mean parameters Θ̄ to an iterative
regression network, whose structure follows HMR [169]. The composition
of the feature extraction network of Fig. B.1 and the iterative regressor
forms the body network g.

Training: We pre-train the body network until validation performance
on 3DPW [235] saturates, using ADAM [180], with batch size 48. The hand
and head sub-networks are pre-trained as well on the FreiHAND [427] and
FFHQ [173] data, again with ADAM [180] and a batch size of 64. Once
validation performance saturates, we freeze the body network and fine-tune
the hand and head sub-networks with all available training data to produce
ExPose. The exact hyper-parameters will be included in the released code.
The entire pipeline is implemented in PyTorch.
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Figure B.2: Illustrative examples. The default global rotation of the hand is replaced
by a random rotation with angle rglobal ∼ U (rmin, rmax) around the ground truth
axis of rotation given by the training data. We selected a range (rmin, rmax)hand=
(−90, 90) degrees. Blue is the ground-truth mesh used as a target for training, while
gray is the starting point of the iterative hand regressor with a perturbed global
rotation.

b.2 data augmentation

For hand and face-only data, shape and pose regression is done following
the iterative scheme of [169], which computes offsets from a set of mean
parameters. When we have access to full body information, we wish to
condition the part specific sub-networks on the output of the body network.
However, naively adding this conditioning is not enough, as this creates a
domain gap between hands and face-only images and those coming from
the body attention mechanism. To bridge this, we augment the training
data by modifying the initial mean point to some random point. In this way,
the part sub-network will be forced to learn to predict the correct offsets,
no matter the initial point, that lead to the pose and shape that matches the
image. As described in Sec. 3.3.3, we randomly perturb the global rotation
of the hand and face data around the ground-truth axis of rotation, as
illustrated in Figs. B.2 and B.3 respectively. We also modify the shape of the
hand and the face by randomly sampling from normal distributions over
the hand and face shape parameters, as illustrated in Figures B.5 and B.6
respectively. For the face-only data, we also augment the rotation of the jaw,
by replacing the default value with a random rotation around the x-axis,
seen in Fig. B.4. Finally, we replace the default mean expression with a
sample drawn from a standard normal distribution, as seen in Fig. B.7.

b.3 converting smpl to smpl-x

There exist a wide variety of SMPL annotations for training 3D body pose
and shape estimation methods. It is therefore important to create an auto-
mated method to convert them to the corresponding SMPL-X parameters,
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Figure B.3: The default global rotation of the head is replaced by a random rotation
with angle rglobal ∼ U (rmin, rmax) around the ground truth axis of rotation given by
the training data. We selected a range (rmin, rmax)head= (−45, 45) degrees. Blue is
the ground-truth mesh used as a target for training, while gray is the starting point
of the iterative face regressor with a perturbed global rotation.

Figure B.4: The default rotation of the jaw, which corresponds to a closed mouth, is
replaced by a random rotation around the x-axis. The angle of rotation is sampled
randomly from the uniform distribution rjaw ∼ U (0, 45).

to use them as training data. To achieve this, we leverage the relation be-
tween SMPL and SMPL-X to build a correspondence map between the two
models. SMPL and SMPL-X are articulated models of the human body that
produce 3D triangle meshes:

SMPL: (MSMPL, TSMPL) (B.1)

SMPL-X: (MSMPL-X, TSMPL-X) (B.2)

MSMPL ∈ R6890×3, TSMPL ∈N13776×3 (B.3)

MSMPL-X ∈ R10475×3, TSMPL-X ∈N20908×3 (B.4)

We start by registering the SMPL template mesh to the SMPL-X template.
Given the registered meshes, we compute for each SMPL-X vertex vi its
nearest point pi on the SMPL mesh and store the index of the nearest SMPL
triangle ti, its vertex indices ti = [ti

0, ti
1, ti

2] and the barycentric coordinates
[αi, βi, γi] of pointi with respect to triangle ti. We also store a binary mask
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Figure B.5: The default mean shape of the head is replaced with a random vector

β ∼ N
(⃗

0, I
)

, I ∈ R10×10 The blue mesh represents the mean shape, while the gray
mesh has a random shape drawn from the above distribution.

Figure B.6: The default mean shape of the hand is replaced with a random vector

β ∼ N
(⃗

0, I
)

, I ∈ R10×10 The blue mesh represents the mean shape, while the gray
mesh has a random shape drawn from the above distribution.

Figure B.7: The default neutral expression of the head is replaced with a random

vector ψ ∼ N
(⃗

0, I
)

, I ∈ R10×10. The blue mesh represents the neutral expression,
while the gray mesh has a random expression drawn from the above distribution.

mi ∈ {0, 1} for each vertex that is used to mask invalid correspondences
between the two models, such as the eyes, inner lip region, etc..

Given a posed SMPL mesh (M′, T ′), e.g. one sample from the fit data of
SPIN [187], we build a mesh M̂ in SMPL-X topology. Vertex v̂i of the mesh
M̂ is computed as:

v̂i = αiv′ti
0
+ βiv′ti

1
+ γiv′ti

2
(B.5)

where v′
ti
0

is the SMPL vertex with index ti
0. We now have a mesh in SMPL-X

topology, which we will use to find the corresponding pose θ, shape β,
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expression ψ and translation t parameters. Let vi be the i-th vertex returned
by posing SMPL-X using the current values of the parameters (θ, β, ψ, t).
We start by optimizing only over the pose θ using the following loss:

E1 (θ) = ∑
(i,j)∈E

mimj
∥∥(vi − vj)− (v̂i − v̂j)

∥∥2
2 (B.6)

where E is the set of 3D edges of the SMPL-X mesh. We use the binary
masks mi, mj to compute the loss only on valid vertices. For the second
stage, we optimize the translation vector t using a vertex-to-vertex loss:

E2 (t) = ∑
i

mi ∥vi − v̂i∥2
2 (B.7)

By this point, we have rigidly aligned the two meshes and matched the
articulation of the original SMPL mesh. All that remains is to also match
the shape, to get the best possible fit. The final step is to optimize over all
parameters (θ, β, ψ, t) using again a vertex-to-vertex loss:

E3 (θ, β, ψ, t) = ∑
i

mi ∥vi − v̂i∥2
2 (B.8)

We use a Trust Region Newton Conjugate Gradient optimizer [258] to search
for minimize the objectives. The implementation for the transfer process
can be found on our website: https://expose.is.tue.mpg.de.

b.4 smplify-x qualitative comparison

As shown in Tab. 3.2, ExPose is almost 200× times faster compared to
SMPLify-X [270], and provides qualitatively similar results to the latter, as
seen in Fig. B.8. Although the accuracy of ExPose is slightly lower than
SMPLify-X, it can provide a better initialization to the latter, helping it
overcome failures of its initialization heuristic and of the keypoint de-
tector. Potentially, this could be done in a loop, similar to SPIN [187] to
continuously improve the performance of ExPose using more in-the-wild
data.

b.5 in-the-wild qualitative results

A qualitative comparison of our method with the state-of-the-art SMPL
regression methods shows the increase in expressivity offered by ExPose;
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Figure B.8: 1. The input image, 2. OpenPose detections, 3. SMPLify-X fitting, with
the neutral model and default focal length, 4. ExPose. When 2D keypoint detections
are missing or wrong, optimization based methods, such as SMPLify-X are unable
to avoid implausible poses. Furthermore, they heavily depend on their initialization
and can produce unnatural poses and shapes, when their initialization heuristic
fails. Regression methods, such as ExPose, avoid these problems and can provide
better initialization points, closer to the actual solution, and accelerate convergence.

see Figs. B.9 and B.10. Figure B.11 compares the output of the naive re-
gression approach with the body-driven attention mechanism of ExPose.
Finally, Figs. B.12 to B.15 contain visualizations of ExPose predictions from
multiple views.
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Figure B.9: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [187] (in yellow), 3. ExPose (in blue). Our proposed method
produces 3D body pose and shape results on par with SPIN [187] and captures
more details for the hands and face. Best viewed in color.
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Figure B.10: Comparison of ExPose with the state-of-the-art body regression method:
1. RGB image, 2. SPIN [187] (in yellow), 3. ExPose (in blue). Our proposed method
produces 3D body pose and shape results on par with SPIN [187] and captures
more details for the hands and face. Best viewed in color.
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Figure B.11: Left: The input image. Middle: Naive regression from a body crop.
Right: ExPose. The attention mechanism helps capture detailed hand articulation
and facial expression.
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Figure B.12: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis
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Figure B.13: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis

147



Figure B.14: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis
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Figure B.15: ExPose results visualized from multiple views. 1. RGB image, 2. overlay,
3. , 4. rotations around the vertical axis
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C
C O L L A B O R AT I V E R E G R E S S I O N O F E X P R E S S I V E B O D I E S
U S I N G M O D E R AT I O N

c.1 implementation details

Data augmentation: For training data, we use image crops around the
body, face and hands. We augment our training image crops, following
mainly [56], as described below. First, we use standard techniques, namely
random horizontal flipping, random image rotations, color noise addition
and random translation of the crop’s center. However this is not enough,
as there is a significant domain gap between face-only and hand-only
datasets, and the respective image crops extracted from full-body images;
the former have significantly higher resolution. To account for this, we also
randomly down-sample and up-sample the head and hand image crops,
to simulate various lower resolutions. Finally, inspired by [295], we add
synthetic motion blur to face and hand crops, to simulate the motion blur
that is common in full-body images. Exact augmentation parameters can be
found in our code website.

Training details: We use PyTorch [268] to implement our pipeline. We
follow a three-step training procedure: (1) We pre-train the model with
body-only, face-only and hand-only datasets; for each dataset we train only
the respective parameters. Since these datasets are captured independently,
there is no body image that corresponds to a face-only or hand-only image.
Consequently, for this step we cannot apply feature fusion, and body-part
features go directly to the respective regressor(s) (bypassing the moderators),
to estimate the respective body-part parameters. Similar to existing work,
we train only a right hand regressor; for images of a left hand, we flip
the image horizontally to use the right hand regressor, and mirror the
predictions to get a left hand. (2) Then, using the same data, we freeze the
feature encoders and proceed with training the regressors and extractors,
see Fig. 4.3 for a description of each module. This step encourages features
Fh

b and F f
b from body images to be in the same space as features Fh and

Ff from part-only images, so that regressors Rfused
f and Rfused

h work for
both feature types. (3) Finally, we train the full network, including the
moderators Mh and M f , but this time using training images with full
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SMPL-X ground truth, to extract part crops from full-body images as well.
However, there are two problems. First, for these images there is no skin
mask available, consequently we remove the loss for body shape β and do
not apply a photometric and identity loss on head crops. Second, localizing
the hands with body-driven attention is much harder compared to the
head, due to the longer kinematic chain, consequently we freeze the hand
regressor Rfused

h to avoid fine-tuning it with invalid inputs.
All parameters are optimized using Adam [180] with a learning rate

of 0.0001. For training the body, hand and face sub-networks, we use a
batch size of 16 , 16, and 8, respectively. The moderator is a fully connected
network with the following structure: FC (2048, 1024), ReLU, FC (1024, 1).
All input images are resized to 224× 224 pixels before feeding them to our
network. During inference, we extract the hand/face crops using the hand
and face locations from Rb’s output. Hand and face cameras are ignored
when estimating full body pose.

Global to relative pose: The regressors Rfused
f and Rfused

h estimate the
absolute head and wrist orientation θg, i.e. irrespective of the (parent) main
body’s pose. However, to “apply” these θg estimates on a SMPL-X body
that is already posed by Rb with θb (up to the wrist and neck, excluding
them), we need to express them relative to their parent in the kinematic
skeleton:

θrelative = Γ(θg, θb), (C.1)

where Γ is the chain transformation function according to SMPL-X’s kine-
matic skeleton hierarchy.

c.2 evaluation

c.2.1 Body-face correlations discussion

PIXIE gives more realistic body shapes, not only due to its gendered shape
loss, but also thanks to the shared body, hand and face shape space of SMPL-
X. This allows PIXIE’s face expert to – uniquely – contribute to whole-body
shape. To verify this, we apply our face expert on face-only images and get
the whole-body shapes of Fig. C.1. These are not only correctly “gendered”,
but also have a plausible BMI. For the sumo wrestler in Fig. C.1, ExPose
predicts a body with higher BMI (26.9) than the mean shape (26.1). PIXIE is
the only 3D whole-body estimation method that explores such face-body
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Figure C.1: Whole-body shape estimation from only our face expert, using SMPL-X’s
joint shape space for all body parts.

shape correlations explicitly. We believe that this is a useful insight and
points the community towards a new direction.

c.2.2 Qualitative Evaluation

Comparison with MTC: In Fig. C.2 we compare ExPose with MTC [381].
ExPose is two orders of magnitude faster and predicts more accurate 3D
body shapes. However, when 2D joint estimations are accurate, optimization-
based methods, such as MTC [381] and SMPLify-X, described in Sec. 2.3.2,
tend to estimate bodies that are better aligned with the image.

Expressive body reconstruction: We compare our method, ExPose, with
other state-of-the-art expressive body reconstruction methods in Fig. C.3.
PIXIE is more robust to challenging ambiguities (blur, occlusion) than
existing whole-body regressors [56, 295], since its moderators fuse “global”
body and “local” part information.

Qualitative results: Finally, in Figs. C.4 to C.6 we provide more stan-
dalone ExPose results. Overall, ExPose produces visually plausible body
shapes with detailed facial expressions.

Failure cases: Although the gender prior loss and the shared whole-body
shape space result in better 3D shape predictions, they are not sufficient
for perfectly estimating full-body 3D shape. Furthermore, the employed
photometric term often causes the model to prefer to explain image ev-
idence using lighting, rather than albedo, which leads to incorrect skin
tone predictions. These points highlight important directions for improving
PIXIE. Representative failure cases can be seen in Fig. C.7.
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Figure C.2: Qualitative ExPose results and comparison to MTC [381]. From left to
right: (1) RGB image, (2) MTC [381], (3) ExPose, (4) ExPose with facial geometric
details, (5) ExPose with estimated face albedo and lighting. Overall, ExPose pro-
duces more visually plausible body shapes and more detailed facial expressions.

153



Figure C.3: Qualitative ExPose results and comparison to ExPose [56] and
FrankMocap [295]. From left to right: (1) RGB images from video, (2)
FrankMocap [295], (3) ExPose, (4) ExPose 3D body predictions with color-coded
part-expert confidence. The moderator predicts the confidence of body/face/hand
experts, redder means higher confidence in the body expert rather than the results
from face/hand experts. Thanks to the moderators, PIXIE is more robust to low-
quality part images. For example, when the hand is blurry, ExPose still predicts a
plausible wrist pose, instead of an unnatural twist.
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Figure C.4: Qualitative ExPose results. From left to right: (1) RGB image, (2) ExPose,
(3) ExPose with facial geometric details, (4) ExPose with estimated face albedo and
lighting.
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Figure C.5: Qualitative ExPose results. From left to right: (1) RGB image, (2) ExPose,
(3) ExPose with facial geometric details, (4) ExPose with estimated face albedo and
lighting.
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Figure C.6: Qualitative ExPose results. From left to right: (1) RGB image, (2) ExPose,
(3) ExPose with facial geometric details, (4) ExPose with estimated face albedo and
lighting.
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Figure C.7: Failure cases for ExPose. In these examples, the implicit reasoning about
gender and the face shape information are not enough to correctly infer the body
shape. Furthermore, due to the formulation of the photometric term the model
prefers to explain image evidence using lighting, rather than albedo, which leads to
wrong skin tone predictions. Finally, replacing the weak-perspective camera with a
perspective model would make the model more robust to extreme viewing angles
and perspective distortion effects. Future work should look into denser forms of
supervision, formulating a better photometric term and integrating a perspective
camera to resolve these issues.

158



D
A C C U R AT E 3 D B O D Y S H A P E R E G R E S S I O N U S I N G
M E T R I C A N D S E M A N T I C AT T R I B U T E S

d.1 data collection

d.1.1 Model-Agency Identity Filtering

We collect internet data consisting of measurements, from model agency
websites. A “fashion model” can work for many agencies and their pictures
can appear on multiple websites. To create non-overlapping training, val-
idation and test sets, we match model identities across websites. To that
end, we use ArcFace [71] for face detection and RetinaNet [72] to compute
identity embeddings Ei ∈ R512 for each image. For every pair of models
(q, t) with the same gender label, let Q, T be the number of query and
target model images and EQ ∈ RQ×512 and ET ∈ RT×512 the query and
target embedding feature matrices. We then compute the pairwise cosine
similarity matrix S ∈ RQ×T between all images in EQ and ET , and the
aggregate and average similarity:

ST(t) =
1
Q ∑

q
S(q, t), (D.1)

STQ =
1

QT ∑
q

∑
t
S(q, t). (D.2)

Each pair with S and ST that has no element larger than the similarity
threshold τ = 0.3 is ignored, as it contains dissimilar models. Finally, we
check if STQ is larger than τ, and we keep a list of all pairs for which this
holds true.

d.1.2 Crowd-sourced Linguistic Shape Attributes

To collect human ratings of how much a word describes a body shape,
we conduct a human intelligence task (hit) on amazon mechanical turk
(AMT). In this task, we show an image of a person along with 15 different
gender-specific attributes. We then ask participants to indicate how strongly
they agree or disagree that the provided words describe the shape of this

159



person’s body. We arrange the rating buttons from strong disagreement to
strong agreement with equal distances to create a 5-point Likert scale. The
rating choices are “strongly disagree” (score 1), “rather disagree” (score 2),
“average” (score 3), “rather agree” (score 4), “strongly agree” (score 5).

We ask multiple persons to rate each body and image, to “average out”
the subjectivity of individual ratings [329]. Additionally, we compute the
Pearson correlation between averaged attribute ratings and ground-truth
measurements. Examples of highly correlated pairs are “Big / Weight”, and
“Short / Height”.

The layout of our CAESAR annotation task is visualized in Fig. D.1. To
ensure good rating quality, we have several qualification requirements per
participant: submitting a minimum of 5000 tasks on AMT and an AMT
acceptance rate of 95%, as well as having a US residency and passing a
language qualification test to ensure similar language skills and cultures
across raters.

d.2 mapping shape representations

d.2.1 Shape to Anatomical Measurements (S2M)

An important part of our project is the computation of body measure-
ments. Following “Virtual Caliper” [281], we present a method to compute
anatomical measurements from a 3D mesh in the canonical T-pose, i.e. after
“undoing” the effect of pose. Specifically, we measure the height, H(β),
weight, W(β), and the chest, waist and hip circumferences, Cc(β), Cw(β),
and Ch(β), respectively. Let vhead(β), vleft heel(β), vchest(β), vwaist(β), vhip(β)
be the head, left heel, chest, waist and hip vertices. H(β) is computed as
the difference in the vertical-axis “Y” coordinates between the top of the
head and the left heel: H(β) = |vy

head(β)− vy
left heel(β)| . To obtain W(β)

we multiply the mesh volume by 985 kg/m3, which is the average human
body density. We compute circumference measurements using the method
of Wuhrer et al. [380].

Here, T ∈ RT×3×3 , where T = 20, 908 is the number of triangles in
the SMPL-X mesh, denotes “shaped” vertices of all triangles of the mesh
M(β, θ) ; we drop expressions, ψ, which are not used in this work. Let us
explain this using the chest circumference Cc(β) as an example. We form
a plane P with normal n = (0, 1, 0) that crosses the point vchest(β). Then,
let I = {pi}N

i=1 be the set of points of P that intersect the body mesh (red
points in Fig. D.4). We store their barycentric coordinates (ui, vi, wi) and the
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Figure D.1: Layout of the AMT task for a male subject. Left: the 3D body mesh in
A-pose. Right: the attributes and ratings buttons.
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corresponding body-triangle index ti. Let CH be the convex hull of I (black
lines in Fig. D.4), and HE the set of edge indices of CH. Cc(β) is equal to
the length of the convex hull:

Cc(β) = ∑
(i,j)∈HE

∥∥∥∥∥∥∥∥∥
ui

vi

wi


⊤

T ti −

uj

vj

wj


⊤

T tj

∥∥∥∥∥∥∥∥∥
2

, (D.3)

where i, j are point indices for line segments of HE and T tj contains the
coordinates of the triangle with index tj. The process is the same for the
waist and hips, but the intersection plane is computed using vwaist, vhip.
All of H(β), W(β), Cc(β), Cw(β), Ch(β) are differentiable functions of body
shape parameters, β.

Note that SMPL-X knows the height distribution of humans and acts as a
strong prior in shape estimation. Given the ground-truth height of a person
(in meter), H(β) can be used to directly supervise height and overcome
scale ambiguity.

d.2.2 Mapping Attributes to Shape (A2S)

We introduce A2S, a model that maps the input attribute ratings to shape
components β as output. We compare a 2nd degree polynomial model with
a linear regression model and a multi-layer perceptron (MLP), using the
Vertex-to-Vertex (V2V) error metric between predicted and ground-truth
SMPL-X meshes, and report results in Tab. D.1. When using only attributes
as input (A2S), the polynomial model of degree d = 2 achieves the best
performance. Adding height and weight to the input vector requires a small
modification, namely using the cubic root of the weight and converting
the height from (m) to (cm). We. With these additions, the 2nd degree
polynomial achieves the best performance.

d.2.3 Images to Attributes (I2A)

We briefly experimented with models that learn to predict attribute scores
from images (I2A). This attribute predictor is implemented using a ResNet50

for feature extraction from the input images, followed by one MLP per gen-
der for attribute score prediction. To quantify the model’s performance, we
measure I2A’s accuracy on inferring the correct Likert score. I2A achieves
60.7 / 69.3% (fe-/male) of correctly predicted attributes, while our S2A
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Model Input V2V mean ± std

Females Males

Mean Shape 18.01 ± 8.73 19.24 ± 10.36

Linear Regression A 10.83 ± 4.77 10.43 ± 4.63

Polynomial (d=2) A 10.58 ± 4.67 10.25 ± 4.48

MLP A 10.73 ± 4.62 10.33 ± 4.57

Linear Regression A+H+W 7.00 ± 2.59 6.56 ± 2.21

Polynomial (d=2) A+H+W 7.31 ± 2.56 6.71 ± 2.21

MLP A+H+W 7.03 ± 2.6 6.68 ± 2.24

Linear Regression A+H+ 3
√

W 6.97 ± 2.58 6.54 ± 2.22

Polynomial (d=2) A+H+ 3
√

W 6.88 ± 2.55 6.49 ± 2.20

Table D.1: Comparison of models for A2S and AHW2S regression.

achieves 68.8 / 76% on CAESAR. Our explanation for this result is that it is
hard for the I2A model to learn to correctly predict attributes independent
of subject pose. Our approach works better, because it decomposes 3D
human estimation into predicting pose and shape. Networks are good at
estimating pose even without GT shape [203]. “SHAPY’s losses” affect only
the shape branch. To minimize these losses, the network has to learn to
correctly predict shape irrespective of pose variations.

d.3 shapy- 3d shape regression from images

Implementation details: To train SHAPY, each batch of training images
contains 50% images collected from model agency websites and 50% images
from ExPose’s [56] training set. Note that the overall number of images of
males and females in our collected model data differs significantly; images
of female models are many more. Therefore, we randomly sample a subset
of female images so that, eventually, we get an equal number of male and
female images. We also use the BMI of each subject, when available, as
a sampling weight for images. In this way, subjects with higher BMI are
selected more often, due to their smaller number, to avoid biasing the model
towards the average BMI of the dataset. Our pipeline is implemented in
PyTorch [268] and we use the ADAM [180] optimizer with a learning rate
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of 1e− 4. We tune the weights of each loss term with grid search on the
MMTS and HBW validation sets. Using a batch size of 48, SHAPY achieves
the best performance on the HBW validation set after 80k steps.

d.4 experiments

d.4.1 Metrics

P2P20K: SMPL-X has more than half of its vertices on the head. Conse-
quently, computing an error based on vertices overemphasizes the im-
portance of the head. To remove this bias, we also report the mean dis-
tance between NP = 20k mesh surface points; see Fig. D.5 for a visu-
alization on the ground-truth and estimated meshes. For this, we uni-
formly sample the SMPL-X template mesh and compute a sparse matrix
HSMPL-X ∈ RNP×V that regresses the mesh surface points from SMPL-X
vertices V, as P = HSMPL-XM.

To use this metric in a mesh with different topology, e.g. SMPL, we simply
need to compute the corresponding HSMPL. For this, we align the SMPL
model to the SMPL-X template mesh. For each point sampled from the
SMPL-X mesh surface, we find the closest point on the aligned SMPL mesh
surface. To obtain the SMPL mesh surface points from SMPL vertices, we
again compute a sparse matrix, HSMPL ∈ RNP×6,890. The distance between
the SMPL-X and SMPL mesh surface points on the template meshes is 0.073
mm, which is negligible.

Given two meshes M1 and M2 with triangulation T1 and T2 we obtain
the mesh surface points P1 = HT1 MS,1 and P2 = HT2 MS,2, where MS,1 and
MS,2 denote the vertices of each mesh, at rest pose (t-pose), with only the
shape blend shapes applied. To compute the P2P20K error we correct for
translation t = P̄2 − P̄1, where P̄ is the center point of P, and define

P2P20K(MS,1, MS,2) =
∥∥HT1 MS,1 + t−HT2 MS,2

∥∥2
2 . (D.4)

d.4.2 Shape Estimation

A2S and its variations: For completeness, Table D.2 shows the results of
the female A2S models in addition to the male ones. The male results can
also be found in Tab. 5.2. Note that attributes improve shape reconstruction
across the board. For example, in terms of P2P20K, AH2S is better than just
H2S, AHW2S is better than just HW2S. It should be emphasized that even
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Method P2P20K Height Weight Chest Waist Hips

- (mm) (mm) (kg) (mm) (mm) (mm)

fe
m

al
e

A2S 10.9± 5.2 27± 21 5± 5 30± 26 32± 31 28± 22

H2S 12.8± 7.0 5± 5 12± 11 93± 72 101± 88 60± 52

AH2S 7.2± 2.8 4± 3 3± 4 27± 23 29± 28 23± 19

HW2S 7.9± 3.2 5± 5 1± 1 25± 22 22± 18 26± 25

AHW2S 6.4± 2.5 4± 3 1± 1 14± 12 14± 12 17± 14

C2S 19.5± 10.8 58± 46 8± 6 54± 36 57± 42 47± 36

AC2S 9.6± 4.3 24± 18 3± 2 18± 15 19± 16 19± 14

HC2S 7.3± 2.8 5± 5 2± 2 19± 16 16± 14 15± 13

AHC2S 6.3± 2.4 4± 3 1± 1 15± 12 14± 12 14± 12

HWC2S 7.2± 2.9 5± 5 1± 1 14± 12 13± 11 14± 12

AHWC2S 6.2± 2.4 4± 3 1± 1 11± 9 12± 10 13± 11

m
al

e

A2S 11.1± 5.2 29± 21 5± 4 30± 22 32± 24 28± 21

H2S 12.1± 6.1 5± 4 11± 11 81± 66 102± 87 40± 33

AH2S 6.8± 2.3 4± 3 3± 3 27± 21 29± 23 24± 18

HW2S 8.1± 2.7 5± 4 1± 1 24± 17 26± 20 21± 18

AHW2S 6.3± 2.1 4± 3 1± 1 19± 15 19± 14 20± 16

C2S 19.7± 11.1 59± 47 9± 8 55± 41 63± 49 37± 28

AC2S 9.6± 4.4 25± 19 3± 3 23± 19 21± 17 18± 14

HC2S 7.7± 2.6 5± 4 2± 2 28± 23 18± 15 13± 11

AHC2S 6.0± 2.0 4± 3 2± 2 21± 17 17± 14 13± 10

HWC2S 7.3± 2.6 5± 4 1± 1 20± 15 14± 12 13± 11

AHWC2S 5.8± 2.0 4± 3 1± 1 16± 13 13± 10 13± 10

Table D.2: Results of A2S and its variations on CMTS test set, in mm or kg. Trained
with gender-specific SMPL-X model.

when many measurements are used as input features, i.e. height, weight,
and chest/waist/hip circumference, adding attributes still improves the
shape estimate, e.g. HWC2S vs. AHWC2S.
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Mean absolute error (mm) ↓
Method HBW MMTS

Height Chest Waist Hips P2P20K Height Chest Waist Hips

SHAPY-H 54 90 77 54 22 52 113 172 108

SHAPY-HA 49 62 71 58 20 60 64 96 77

SHAPY-C 72 65 77 60 26 119 66 70 70

SHAPY-CA 54 69 78 58 22 74 60 82 69

SHAPY-HC 53 61 77 55 23 54 62 72 69

SHAPY-HCA 47 66 75 52 20 57 61 85 73

Table D.3: Leave-one-out evaluation on HBW and MMTS.

Attribute/Measurement ablation: To investigate the extent to which at-
tributes can replace ground truth measurements in network training, we
train SHAPY’s variations in a leave-one-out manner: SHAPY-H uses only
height and SHAPY-C only hip/waist/chest circumference. We compare
these models with SHAPY-AH and SHAPY-AC, which use attributes in
addition to height and circumference measurements, respectively. For com-
pleteness, we also evaluate SHAPY-HC and SHAPY-AHC, which use all
measurements; the latter also uses attributes. The results are reported in
Sec. D.4.2 (MMTS) and Sec. D.4.2 (HBW). The tables show that attributes
are an adequate replacement for measurements. For example, in Sec. D.4.2,
the height (SHAPY-C vs. SHAPY-CA) and circumference errors (SHAPY-H
vs. SHAPY-AH) are reduced significantly when attributes are taken into
account. On HBW, the P2P20K errors are equal or lower, when attribute
information is used, see Sec. D.4.2. Surprisingly, seeing attributes improves
the height error in all three variations. This suggests that training on model
images introduces a bias that A2S antagonizes.

d.4.3 Pose evaluation

3D Poses in the Wild (3DPW) [235]: This dataset is mainly useful for
evaluating body pose accuracy since it contains few subjects and limited
body shape variation. The test set contains a limited set of 5 subjects in
indoor/outdoor videos with everyday clothing. All subjects were scanned
to obtain their ground-truth body shape. The body poses are pseudo
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ground-truth SMPL fits, recovered from images and IMUs. We convert
pose and shape to SMPL-X for evaluation.

We evaluate SHAPY on 3DPW to report pose estimation accuracy (Tab. D.4).
SHAPY’s pose accuracy is slightly behind ExPose which also uses SMPL-X.
SHAPY’s performance is better than HMR [169] and STRAPS [310]. How-
ever, SHAPY does not outperform recent pose estimation methods, e.g.
HybrIK [203]. We assume that SHAPY’s pose estimation accuracy on 3DPW
can be improved by (1) adding data from the 3DPW training set (similar to
Sengupta et al. [311] who sample poses from 3DPW training set) and (2)
creating pseudo ground-truth fits for the model data.

Model MPJPE PA-MPJPE

HMR [169] SMPL 130 81.3

SPIN [187] SMPL 96.9 59.2

TUCH [249] SMPL 84.9 55.5

EFT [163] SMPL - 54.2

HybrIK [203] SMPL 80.0 48.8

STRAPS [310]* SMPL - 66.8

Sengupta et al. [312]* SMPL - 61.0

Sengupta et al. [311]* SMPL 84.9 53.6

ExPose SMPL-X 93.4 60.7

SHAPY (ours) SMPL-X 95.2 62.6

Table D.4: Evaluation on 3DPW [235]. * uses body poses sampled from the 3DPW
training set for training.

S2A: Table D.5 shows the results of S2A in detail. All attributes are classified
correctly with an accuracy of at least 58.05% (females) and 68.14% (males).
The probability of randomly guessing the correct class is 20%.
AHWC and AHWC2S noise: To evaluate AHWC’s robustness to noise in
the input, we fit AHWC using the per-rater scores instead of the average
score. The P2P20K ↓ error only increases by 1.0 mm to 6.8 when using the
per-rater scores.
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Attribute
Male Female

MAE ± SD CCP MAE ± SD CCP

Big 0.25± 0.18 71.68% 0.31± 0.23 70.00%

Broad Shoulders 0.26± 0.20 73.75% 0.33± 0.24 63.90%

Long Legs 0.23± 0.17 81.12% 0.43± 0.33 58.05%

Long Neck 0.27± 0.21 73.75% 0.29± 0.21 69.51%

Long Torso 0.27± 0.20 70.80% 0.36± 0.27 62.68%

Muscular 0.31± 0.24 69.03% 0.26± 0.21 73.17%

Short 0.28± 0.22 72.27% 0.27± 0.21 67.56%

Short Arms 0.20± 0.15 84.07% 0.27± 0.22 72.20%

Tall 0.27± 0.22 70.80% 0.30± 0.23 70.98%

Average 0.27± 0.19 78.76% N/A N/A

Delicate Build 0.21± 0.16 78.17% N/A N/A

Masculine 0.23± 0.18 78.17% N/A N/A

Rectangular 0.27± 0.20 80.24% N/A N/A

Skinny Arms 0.25± 0.19 76.40% N/A N/A

Soft Body 0.32± 0.23 68.14% N/A N/A

Large Breasts N/A N/A 0.31± 0.23 72.93%

Pear Shaped N/A N/A 0.32± 0.22 64.39%

Petite N/A N/A 0.40± 0.30 61.95%

Skinny Legs N/A N/A 0.25± 0.18 81.22%

Slim Waist N/A N/A 0.30± 0.23 71.71%

Feminine N/A N/A 0.26± 0.20 73.41%

Table D.5: S2A evaluation. We report mean, standard deviation and percentage of
correctly predicted classes per attribute on CMTS test set.

d.4.4 Qualitative Results

We show additional qualitative results in Figs. D.2 and D.3. Failure cases
are shown in Fig. D.6. To deal with high-BMI bodies, we need to expand
the set of training images and add additional shape attributes that are
descriptive for high-BMI shapes. Muscle definition on highly muscular
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bodies is not well represented by SMPL-X, nor do our attributes capture
this. The SHAPY approach, however, could be used to capture this with a
suitable body model and more appropriate attributes.
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Figure D.2: Qualitative results of SHAPY predictions for female bodies
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Figure D.3: Qualitative results of SHAPY predictions for male bodies.
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Figure D.4: Automatic anthropomet-
ric measurements on a 3D mesh. The
red points lie on the intersection of
planes at chest/waist/hip height with
the mesh, while their convex hull is
shown with black lines.

Figure D.5: The 20K body mesh sur-
face points (in black) used to evalu-
ated body shape estimation accuracy.

Figure D.6: Failure cases. In the first example (upper left) the weight is underesti-
mated. Other failure cases of SHAPY are muscular bodies (upper right) and body
shapes with high BMI (second row).
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E
L E A R N I N G T O F I T M O R P H A B L E M O D E L S

e.1 errors per iteration

Figure E.2 shows the metric values per iteration, averaged across the test
set, for our fitter on the task of fitting SMPL+H to HMD head and hand
signals. Different to Fig. 6.5, this figure corresponds to the full visibility
scenario, i.e. the hands are always visible. The learned fitter aggressively
optimizes the target data term and quickly converges to the minimum.

e.2 update rule

In addition to the update rule described in Eq. (6.1), we investigated two
other alternatives, based on the convex combination of the network update
and gradient descent. The first is a simple re-formulation of Eq. (6.1),
with λ ∈ [0, 1], selecting either the network update or the gradient descent
direction. In the second, we first compute a convex combination between the
normalized network update and gradient descent, i.e. selecting a direction,
and then scale the computed direction according to γ.

u(∆Θn, gn, Θn) = λ∆Θn + (1− λ) (−γgn)

u(∆Θn, gn, Θn) = γ

[
λ

(
∆Θn

∥∆Θn∥

)
+ (1− λ)

(
−gn

∥gn∥

)]
λ = σ

(
fλ(R(Θn), R(Θn + ∆Θn)), λ ∈ R|Θ|

) (E.1)

Here, σ() is the sigmoid function: σ(x) = 1
1+exp (−x) . The learning rate of

the gradient descent term is the same as Eq. (6.2):

γ = fγ(R(Θn), R(Θn + ∆Θn)), γ ∈ R|Θ| (E.2)

We empirically found that the performance of these two variants is
inferior to the proposed update rule, but we nevertheless list them for
completeness.
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Figure E.1: Top: the general fitting process described in Alg. 1. Bottom: A schematic
representation of our update rule, described Eqs. (6.1) and (6.2).

e.3 additional ablation

Table E.1 contains an additional ablation experiment, where we compare
different options for the type of variable for λ, γ, namely whether to use
a scalar or a vector variable, and and whether to use a common network
predictor for λ, γ. We use the problem of fitting SMPL to 2D keypoint
predictions, evaluating our results using the 3DPW test set.

e.4 qualitative comparisons

We present a qualitative comparison of the proposed learned optimizer
with a classic optimization-based method in Fig. E.3. Without explicit hand-
crafted constraints, the classic approach cannot resolve problems such as
ground-floor penetration. Formulating a term to represent this constraint is
not a trivial process. Furthermore, tuning the relative weight of this term
to avoid under-fitting the data term is not a trivial process. Our proposed
method on the other hand can learn to handle these constraints directly
from data, without any heuristics.
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Figure E.2: Errors per iteration when fitting SMPL+H to HMD data, assuming that
the hands are always visible. From left to right: 1) Full body vertex and joint errors,
2) head, left and right hand V2V errors and 3) vertex and joint ground distance,
computed on the set of points below ground.

e.5 training details

e.5.1 GRU formulation

All our recurrent networks are implemented with Gated Recurrent Units
(GRU) [52], with layer normalization [19]:

zn = σg (LN(Wzx) + LN(Uzhn−1))

rn = σg (LN(Wrx) + LN(Urhn−1))

ĥn = ϕh (LN(Whx) + LN(Uh (rn ⊙ hn−1)))

hn = (1− zn)⊙ hn−1 + zn ⊙ ĥn, h0 = Φh (D)

(E.3)

We also tried replacing the GRUs with LSTMs [134], but did not observe
significant performance benefit. Hence we chose the computationally lighter
GRUs.

e.5.2 Training losses

We apply a loss on the output of every step of our network:

L({Θn}N
n=0, {Θ̂n}N

n=0; D) =
N

∑
i=0
Li(Θi, Θ̂i; D) (E.4)
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Vector λ Vector γ Shared network for λ, γ PA-MPJPE (mm)

✓ ✗ ✗ 52.8

✗ ✓ ✗ 52.7

✓ ✓ ✗ 52.3

✓ ✓ ✓ 52.2

Table E.1: Predicting vector values for λ, γ is always better than scalars. This is
expected, since each variable to be optimized has different scale and the learned
fitter must adapt its predicted updates accordingly. Having a shared network for
λ, γ improves performance and lowers the number of parameters of the learned
fitter.

The loss Li contains the following terms:

Li = λMLM
i + λELEi + λTLTi + λθLθ

i (E.5)

LM
i =

∥∥M̂−M
∥∥

1 (E.6)

LEi = ∑
(i,j)∈E

∥∥(M̂i − M̂j)− (Mi −Mj)
∥∥

1 (E.7)

LTi =
J

∑
j=1

∥∥T̂j − Tj
∥∥

1 (E.8)

Lθ
i =

∥∥R̂θ − Rθ

∥∥
1 +

∥∥t̂− t
∥∥

1 (E.9)

M represents the mesh vertices deformed by parameters Θ. E is the set
of vertex indices of the mesh edges. T denotes the transformations in world
coordinate while Rθ denotes the rotation matrices (in the parent-relative
coordinate frame) computed from the pose values θ. t is the root translation
vector. We use the following values for the weights of the training losses:
λM = 1000, λE = 1000, λT = 100, λθ = 1, λt = 100.

e.5.3 Datasets

For body fitting from HMD signals, we use a subset of AMASS [232] to
train and test our method. Specifically, we use CMU [60], KIT [233] and
MPI_HDM05 [250], adopting the same pre-processing and training, test
splits as [75]. An important difference is that we fit the neutral SMPL+H to

176



the gendered SMPL+H data found in AMASS, to preserve correct contact
with the ground and avoid the use of heuristics [285]. We attach random
hand poses from the MANO [293] training set to simulate hand articulation.
In all our experiments that involve SMPL+H, we use the ground-truth
shape parameters β. Future work could include estimating a subset of the
shape parameters corresponding to height from the position of the headset.
For the learned fitter that estimates body parameters from 2D joints, we
use the data, augmentation and evaluation protocol of Song et al. [324]. To
be more precise, we use AMASS [232] to train the fitter and evaluate the
resulting model on 3DPW [235], which contains sequences of subjects in
complex poses in outdoor scenes, along with SMPL parameters captured
using RGB cameras and IMUs.
For face fitting from 2D landmarks, we use the face model proposed in [377]
to generate a synthetic face dataset by sampling 50000 sets of parameters
from the model space. For each sample, we vary pose, identity and expres-
sion. We use a perspective camera with focal length (512, 512) and principal
point (256, 256) (in pixels) to project the 3D landmarks onto the image for
2D landmarks. Afterwards, we randomly split this by 80/20 into training
and testing sets.

e.5.4 Training schedule

We implement our model in [268] and train it with a batch size of 512 on 4

GPUs using Adam [180]. We anneal the learning rate by a factor of 0.1 after
400 epochs. We apply dropout with a probability of p = 0.5 on the hidden
states of the GRUs. We initialize the weights of the output linear layer of
Eq. (E.3) with a gain equal to 0.01 [111].

e.5.5 Edge loss

We empirically observed that the loss between the 3D edges of the predicted
and ground-truth meshes helps training converge faster.

e.5.6 Runtimes

We measure time on the 2D keypoint fitting problem on a Quadro P5000

GPU and with a batch size of 512 data points. Our extra networks and
update rule add 6 (ms) per iteration to LGD’s [324] runtime. Using a
common network for γ and λ reduces this to 4 (ms).
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Figure E.3: Comparison of our learned fitter with a Levenberg-Marquardt based
optimization method. 1) Input HMD data and Ground-Truth mesh (blue), 2) LM
solution (orange) overlayed on the GT, 3) our solution (yellow) overlayed on the
GT. While the classic LM optimization successfully fits the input data, it still needs
hand-crafted priors to prevent ground floor penetration. In contrast, our proposed
fitter learns from the data to avoid such penetrations. Best viewed in color.
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learned optimizer slows down as it approaches a minimum of the target data term.

e.5.7 Number of iterations

Similar to LGD [324], we observe limited gains beyond 5 iterations. Training
with more iterations, e.g. 10 or 20, leads to similar performance, at the cost
of increased training time. Picking a random number of iterations during
training, e.g. 5 to 20, does not affect the final result.
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Figure E.5: A visualization of the different body parts used to compute metrics.
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